مدل‌سازی توزیع اندازه ذرات رسوبی در قوس رودخانه با استفاده از رگرسیون جمعی تعمیم‌یافته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت ساخت و آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 استادیار، گروه مدیریت ساخت و آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

3 استادیار، گروه آموزشی مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران.

چکیده

توزیع اندازه ذرات رسوبی یکی از موضوعات مهم در دینامیک رسوبات است که به واسطه اثرگذاری بر انتقال رسوب، زبری بستر و شرایط زیست محیطی رودخانه مورد توجه قرار دارد و با وجود اهمیت بیشتر این موضوع در بسترهای قوسی به دلیل شرایط هندسی رودخانه و پیچیدگی جریان‌های حاکم، شناخت کمتری نسبت به آن وجود دارد. در این تحقیق توزیع اندازه ذرات رسوبی در قوس رودخانه‌های با بستر شنی تحت اثر مولفه‌های هندسی قوس و مشخصات هیدرولیکی جریان و با استفاده از داده‌های میدانی مطالعه شده است. 180 نمونه رسوبی از لایه سطحی بستر، پارامترهای هیدرولیکی جریان شامل سرعت و عمق جریان و مشخصات هندسی، از نه قوس آزاد رودخانه برداشت شده و پس از تعیین مشخصات دانه‌بندی رسوبات در آزمایشگاه و محاسبه سایر پارامترهای موردنیاز، از تئوری پی- باکینگهام برای شناسایی پارامترهای موثر بی بعد و تعیین معادله مشخصه استفاده گردیده است. به منظور پرهیز از ایجاد خطا در نتایج، متغیرهای دارای ضریب همبستگی بیشتر از 0.5 و دارای مقدار احتمال بیشتر از 0.5 از فرایند مدل‌سازی حذف شده‌اند و در نهایت با به کارگیری روش رگرسیون جمعی تعمیم‌یافته یک مدل ریاضی برای توزیع اندازه ذرات رسوبی بر اساس پارامترهای هندسی قوس و مشخصات جریان ارائه شده است. رابطه به دست آمده اثرگذاری عدد فرود (Fr)، پارامتر شیلدز (θShields ) و نسبت شعاع قوس به عرض مقطع (Rc/T) بر متوسط اندازه رسوبات بستر (T/ds) با مقدار ضریب تعیین (R^2) برابر 0.76 را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modelling of Sediment Grains Size Distribution in River Bend Using Generalized Additive Model

نویسندگان [English]

  • Arman Nejat Dehkordi 1
  • Ahmad Sharafati 2
  • Mojtab Mehraein 3
  • Seyed Abbas Hoseini 2
1 . Ph.D. Candidate, Department of Water and Construction Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Assistant Professor, Department of Water and Construction Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.
چکیده [English]

Sediment grains size have always been considered as one of the crucial issues in the case of sediment dynamics. This seems necessary as it significantly affects sediment transport, bed roughness, and river environmental conditions. Since the geometric factors and characteristics of hydraulic flow in river bends are very complex, the analysis of sediment grain size distribution becoming an essential issue in bends that has been studied less so far. In this research, the distribution of the sizes of sediment grains in natural river bends having gravel beds was taken into consideration using field data. To achieve such a goal, 180 sedimentary samples from upper layers and other hydraulic flow parameters, including the velocity and depth of the flow and the characteristics of geometric beds, were gathered from nine different river bends. After determining the grain sizes of the sediments in the laboratory and calculating other required parameters, the P-Buckingham theory was applied to identify both the effective non-dimensional parameters and the characteristic equation. Then, the Generalized Additive Model (GAM) was used to determine the relationship between variables. Also, to avoid errors in the results, variables with a correlation coefficient greater than 0.5 and a probability value (p-value) greater than 0.05 were removed from the modeling process. Finally, a mathematical model for the distribution of sediment particle sizes based on the geometric parameters of the bends and the flow characteristics was developed. The obtained equation, with a coefficient of determination (R^2) equal to 0.76, shows that Froude Number (F_r), Shields parameter (θ_Shields), and the proportion of curvature radius to the top width section (R_c/T) affect on the median sizes of sediments in the gravel river bends.

کلیدواژه‌ها [English]

  • Dimensional analysis
  • Generalized additive model
  • River bend
  • Sediment grain size
  1. Albrecht, M. C., Nachtsheim, C. J., Albrecht, T. A., & Cook, R. D. (2013). Experimental design for engineering dimensional analysis. Technometrics, 55(3), 257-270.
  2. Asquith, W. H. (2013). Regression Models of Discharge and Mean Velocity Associated with Near-Median Streamflow Conditions in Texas: Utility of the U.S. Geological Survey Discharge Measurement Database. Journal of Hydrologic Engineering, 19(1), 108-122.
  3. Cordier, F., Tassi, P., Claude, N., Crosato, A., Rodrigues, S., & Pham Van Bang, D. (2020). Bar pattern and sediment sorting in a channel contraction/expansion area: Application to the Loire River at Bréhémont (France). Advances in Water Resources, 140(1), 1-18.
  4. Dutta, S., & Garcia, M. H. (2018). Nonlinear Distribution of Sediment at River Diversions: Brief History of the Bulle Effect and Its Implications. Journal of Hydraulic Engineering, 144(5), 1-12.
  5. Fernández, R., Vitale, A. J., Parker, G., & García, M. H. (2020). Hydraulic resistance in mixed bedrock-alluvial meandering channels. Journal of Hydraulic Research, 59(2), 298-313.
  6. Freund, R.J., Wilson, W.J. and Mohr, D.L. (2010). Statistical Methods. Cambridge, Academic Press.
  7. Froehlich, D. C. (2020). Neural Network Prediction of Maximum Scour in Bends of Sand-Bed Rivers. Journal of Hydraulic Engineering, 146(10), https://doi.org/10.1061/(ASCE)HY.1943-7900.0001804.
  8. Germaine, J. T., & Germaine, A. V. (2009). Geotechnical Laboratory Measurements for Engineers. New Jersey, John Wiley & Sons, Inc.
  9. Hastie, T., & Tibshirani, R.J. (1990). Generalized Additive Models. Monographs on Statistics and Applied London, Chapman and Hall.
  10. Jang, J., Ho, H., & Yen, C. (2011). Effects of Lifting Force on Bed Topography and Bed-Surface Sediment Size in Channel Bend. Journal of Hydraulic Engineering, 137(9), 911-920.
  11. Julien, P. Y., & Anthony, D. J. (2002). Bed load motion and grain sorting in a meandering stream. Journal of Hydraulic Research, 40(2), 125-133.
  12. Kuhnle, R. A., Wren, D. G., & Langendoen, E. J. (2019). Structural Changes of Mobile Gravel Bed Surface for Increasing Flow Intensity. Journal of Hydraulic Engineering, 146(2), https://doi.org/10.1061/(ASCE)HY.1943-7900.0001699.
  13. Leathwick, J. R., Elith, J., & Hastie, T. (2006). Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling, 199(2), 188-196.
  14. Li, J., He, X., Wei, J., Bao, Y., Tang, Q., Nambajimana, J. de D., Nsabimana, G., & Khurram, D. (2021). Multifractal features of the particle-size distribution of suspended sediment in the Three Gorges Reservoir, China. International Journal of Sediment Research, 36(4), 489-500.
  15. McKie, C. W., Juez, C., Plumb, B. D., Annable, W. K., & Franca, M. J. (2020). How Large Immobile Sediments in Gravel Bed Rivers Impact Sediment Transport and Bed Morphology. Journal of Hydraulic Engineering, 147(2), https://doi.org/10.1061/(ASCE)HY.1943-7900.0001842.
  16. Mohanta, A., & Patra, K. C. (2019). MARS for Prediction of Shear Force and Discharge in Two-Stage Meandering Channel. Journal of Irrigation and Drainage Engineering, 145(8), https://doi.org/10.1061/(ASCE)IR.1943-4774.0001402.
  17. Naito, K., Ma, H., Nittrouer, J. A., Zhang, Y., Wu, B., Wang, Y., Fu, X., & Parker, G. (2019). Extended Engelund–Hansen type sediment transport relation for mixtures based on the sand-silt-bed Lower Yellow River, China. Journal of Hydraulic Research, 57(6), 770-785.
  18. Parker, G., & Andrews, E. D. (1985). Sorting of Bed Load Sediment by Flow in Meander Bends. Water Resources Research, 21(9), 1361-1373.
  19. Pitlick, J., Mueller, E. R., Segura, C., Cress, R., & Torizzo, M. (2008). Relation between flow, surface-layer armoring and sediment transport in gravel-bed rivers. Earth Surface Processes and Landforms, 33(8), 1192-1209.
  20. Pourghasemi, H. R., & Rossi, M. (2016). Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theoretical and Applied Climatology, 130(1), 609-633.
  21. Rovira, A., Núñez-González, F., & Ibañez, C. (2018). Dependence of sediment sorting on bedload transport phase in a river meander. Earth Surface Processes and Landforms, 43(10), 2077-2088.
  22. Thompson, M., & Lowthian, P. J. (2011). Analysis of Variance (ANOVA) and Its Applications. Imperial college Press.
  23. Tian, S., Li, Z., Wang, Z., Jiang, E., Wang, W., & Sun, M. (2021). Mineral composition and particle size distribution of river sediment and loess in the middle and lower Yellow River. International Journal of Sediment Research, 36(3), 392-400.
  24. Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques. Burlington, Morgan Kaufmann publications.
  25. Wright, S., & Parker, G. (2005). Modeling downstream fining in sand-bed rivers. I: formulation. Journal of hydraulic research, 43(6), 613-620.