Abbasi, A., Khalili, K., Behmanesh, J., & Shirzad, A. (2020). Application of support vector machine and bayesian network for agricultural drought prediction. Journal of Watershed Engineering and Management, 12(1), 107-124 (In Persian).
Ahmadi, F. (2016). Comparing the Performance of Support Vector machines and Bayesian Networks in predicting daily river flow (case study: Barandoozchay River). Journal of Water and Soil Conservation, 22(6), 171-186 (In Persian).
Biondi, D., & De Luca, D. L. (2012). A Bayesian approach for real-time flood forecasting. Physics and Chemistry of the Earth, Parts A/B/C, 42, 91-97.
Ghose, B., Dhawan, H., Kulkarni, H., Aslekar, U., Patil, S., Ramachandrudu, M. V., ... & Prasad, E. (2018). Peoples’ participation for sustainable groundwater management. In Clean and Sustainable Groundwater in India (pp. 215-234). Springer, Singapore.
Gong, Y., Zhang, Y., Lan, S., & Wang, H. (2016). A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida. Water Resources Management, 30(1), 375-391.
Huang, F., Huang, J., Jiang, S. H., & Zhou, C. (2017). Prediction of groundwater levels using evidence of chaos and support vector machine. Journal of Hydroinformatics, 19(4), 586-606.
Kardan Moghadam, H., & Roozbahani, A. (2015). Evaluation of Bayesian networks model in monthly groundwater level prediction (Case study: Birjand aquifer). Water and Irrigation Management, 5(2), 139-151.
Karimi-Rizvandi, S., Goodarzi, H. V., Afkoueieh, J. H., Chung, I. M., Kisi, O., Kim, S., & Linh, N. T. T. (2021). Groundwater-Potential Mapping Using a Self-Learning Bayesian Network Model: A Comparison among Metaheuristic Algorithms. Water, 13(5), 658.
Mirarabi, A., Nassery, H. R., Nakhaei, M., Adamowski, J., Akbarzadeh, A. H., & Alijani, F. (2019). Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems. Environmental Earth Sciences, 78(15), 1-15.
Moghaddam, H. K., Milan, S. G., Kayhomayoon, Z., & Azar, N. A. (2021). The prediction of aquifer groundwater level based on spatial clustering approach using machine learning. Environmental Monitoring and Assessment, 193(4), 1-20.
Moghaddam, H. K., Moghaddam, H. K., Kivi, Z. R., Bahreinimotlagh, M., & Alizadeh, M. J. (2019). Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundwater for Sustainable Development, 9, 100237.
Moghaddam, H. K., Banihabib, M. E., & Javadi, S. (2018). Quantitative sustainability analysis of aquifer system (case study: South Khorasan-Birjand aquifer). Journal of water and soil, 31(6).
Montanari, A., Shoemaker, C. A., & Van de Giesen, N. (2009). Introduction to special section on Uncertainty Assessment in Surface and Subsurface Hydrology: An overview of issues and challenges. Water Resources Research, 45(12).
Nash, D., & Hannah, M. (2011). Using Monte-Carlo simulations and Bayesian Networks to quantify and demonstrate the impact of fertiliser best management practices. Environmental Modelling & Software, 26(9), 1079-1088.
Noorbeh, P., Roozbahani, A., & Moghaddam, H. K. (2020). Annual and monthly dam inflow prediction using Bayesian networks. Water Resources Management, 34(9), 2933-2951.
Nourani, V., & Mousavi, S. (2016). Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method. Journal of Hydrology, 536, 10-25.
Sahoo, S., & Jha, M. K. (2013). Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment. Hydrogeology Journal, 21(8), 1865-1887.
Roozbahani, A., Ebrahimi, E., & Banihabib, M. E. (2018). A framework for ground water management based on bayesian network and MCDM techniques. Water resources management, 32(15), 4985-5005.
Tabesh, M., Roozbahani, A., Roghani, B., Faghihi, N. R., & Heydarzadeh, R. (2018). Risk assessment of factors influencing non-revenue water using Bayesian networks and fuzzy logic. Water Resources Management, 32(11), 3647-3670.
Wen, X., Feng, Q., Deo, R. C., Wu, M., & Si, J. (2017). Wavelet analysis–artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an arid inland river basin, northwestern China. Hydrology Research, 48(6), 1710-1729.
Yue, Q., Zhang, F., & Guo, P. (2018). Optimization-based agricultural water-saving potential analysis in Minqin County, Gansu Province China. Water, 10(9), 1125.
Yunana, D., Maclaine, S., Tng, K. H., Zappia, L., Bradley, I., Roser, D., ... & Le-Clech, P. (2021). Developing Bayesian networks in managing the risk of Legionella colonisation of groundwater aeration systems. Water Research, 193, 116854.