Ranking of Resilience Indicators of Mashhad Plain to Groundwater Resources Reduction by Bayesian Best-Worst Method

Document Type : Research Paper


1 Ph.D. Student, Department of Agricultural Economics, Faculty of Agriculture, Ferdowsi University, of Mashhad, Mashhad, Iran.

2 Associate Professor, Department of Agricultural Economics, Faculty of Agriculture, Ferdowsi University, of Mashhad, Mashhad, Iran.

3 Professor, Department of Agricultural Economics, Faculty of Agriculture, Ferdowsi University, of Mashhad, Mashhad, Iran


Water insecurity is a growing concern worldwide, especially for developing countries, where a wide range of activities, including agriculture, depend on water supply systems. Iran is no exception. For example, the increasing use of surface and groundwater resources in the Mashhad plain as a result of the development of agriculture and related industries in this plain has led to an intensification of the declining trend of its aquifer level. Therefore, the resilience of Mashhad plain is very important in reducing groundwater resources. In this research, it has been tried to analyze the priority of these variables after determining the basic variables affecting the model, according to the opinion of experts and using the two best-worst business methods and the process of hierarchical analysis. In the future, knowledge will define the basic strategies for increasing the resilience of these resources in this plain. According to the literature review, this research is the first attempt to apply the best-worst business method in this field of research. The results of this study showed that the discharge rate of groundwater in agriculture with a final weight of 0.18103 in the BWM section and 0.21216 in the AHP section, respectively, the existing agricultural groundwater resources with a final weight of 0.0444 in the BWM section and 0.174165 in the AHP section, the amount of surface and groundwater losses in the agricultural sector with a final weight of 0.10248 in the BWM section and 0.884 in the AHP section, with different order in the two methods, are of the highest importance.


1. آل محمد.، س. ملک محمدی، ب.  یاوری، ا. ر. و یزدان پناه، م. (1395). تحلیلی بر تاب­آوری منابع آب در فرایند حکمرانی سرزمین فلات ایران. راهبرد.  81 (4): 145-176.
2. باریکانی، ا.، احمدیان، م. و خلیلیان، ص. (1390). بهره‌برداری بهینه پایدار از منابع آب زیرزمینی در بخش کشاورزی: مطالعه موردی زیربخش زراعت دشت قزوین. اقتصاد و توسعه کشاورزی (علوم و صنایع کشاورزی). 25 (2): 253-262.
3. درخشان، ه.، داوری، ک. هاشمی‌نیا، م. و ضیائی، ع.ن. (1396). حداکثر خشکسالی محتمل مبنایی برای تخمین و حفظ ذخایر استراتژیک آب زیرزمینی. آب و توسعه پایدار. 4 (2): 130-121.
4. غفوری خرانق، س.، بنی حبیب، م. ا. و جوادی، س. (1398). ارزیابی سناریوهای حکمرانی آب زیرزمینی. مدیریت آب و آبیاری. 9 (2): 305-319.
5. فرزانه، م. ر.، باقری، ع. و مومنی، ف. (1398). نقد رویکرد حاکم بر طرح احیا و تعادل بخشی منابع آب زیرزمینی و پیشنهاد راهکار جایگزین جهت پیاده سازی در محدوده‌ی مطالعاتی رفسنجان. پژوهش های حفاظت آب و خاک. 26 (1): 169-185.
6. مسعودیان، م.،  و داوودی نژاد، م. (1393). روش ها و مدل های کاهش مصرف آب در بخش صنعت. دومین همایش ملی بازیافت آب راهبردی اصولی برای بحران آب. دفتر طرح کلان ملی دانش وفناوری بازیافت پساب‌های شهری صنعتی و کشاورزی دانشگاه تهران. تهران- ایران.
7. مهر آذر، آ.، مساح بوانی، ع.ر. مشعل، م. و رحیمی خوب، ح. (1395). مدل سازی یکپارچه سیستم‌های منابع آب، کشاورزی و اقتصادی- اجتماعی دشت هشتگرد با رویکرد دینامیک سیستم‌ها. مدیریت آب و آبیاری. 6 (2): 263-279.
8. مولوی، ح.، لیاقت، ع.م. و نظری، ب. (1395). ارزیابی سیاست‎های اصلاح الگوی کشت و مدیریت کم‌آبیاری با استفاده از مدل‌سازی پویایی سیستم (مطالعه موردی: حوضه‌ی آبریز ارس). مدیریت آب و آبیاری. 6 (2): 217-236.
9. Boysen, F. (2002). An overview and evaluation of composite indices of development. Journal of Social Indicators Research. 59: 115-151.
10. Cuthbert, M. O., Taylor, R. G., Favreau, G., Todd, M. C., Shamsudduha, M., Villholth, K. G. & Lawson, F. M. (2019). Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature. 572 (7768): 230-234.
11. Fuchs, E. H., Carroll, K. C., & King, J. P. (2018). Quantifying groundwater resilience through conjunctive use for irrigated agriculture in a constrained aquifer system. Journal of hydrology. 565: 747-759.
12. Hashimoto, t., Stedinger, J.R. & Loucks, D.P. (1982). Reliability, Resiliency and Vulnerability Criteria for Water Resources System Performance Evaluation. Water Resources Research. 10(1): 14-20.
13. Hund, S. V., Allen, D. M., Morillas, L., & Johnson, M. S. (2018). Groundwater recharge indicator as tool for decision makers to increase socio-hydrological resilience to seasonal drought. Journal of Hydrology. 563 (5): 1119-1134.
14. Derakhshan, H., Davari, k. Hasheminia, S.M. & Naghi A. (2018). Protecting strategic growndwater reserves is essential for sustainable development. Second Conference on Non-Agent Defense and Sustainable Development. Bejing, China.
15. Intharathirat, R., & Salam, P. A. (2020). Analytical Hierarchy Process-Based Decision Making for Sustainable MSW Management Systems in Small and Medium Cities. In Sustainable Waste Management: Policies and Case Studies. Springer, Singapore.
16. Izady A., Davary K., Alizadeh A., MoghaddamNia, A., Ziaei A.N. and Hasheminia, S.M. (2013). Application of NN-ARX model to predict groundwater levels in the Neishaboor Plain, Iran. Water Resources Management. 27(14): 4773–4794.
17. Kotir, J. H., Smith, K. Brown, G. Marshall, N. & Johanstone. R. (2016). A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana. Science of the Total Environment. 573: 444-457.
18. Li., R. & Merchant, J.W. (2013). Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: A case study in North Dakota, USA. Science of the Total Environment 447: 32–45.
19. Loucks, D.P. (1997). Quantifying Trends in System Sustainability. Hydrological Science Journal. 42(4): 513-530.
20. MacDonald, A. M., Bell, R. A., Kebede, S., Azagegn, T., Yehualaeshet, T., Pichon, F. & Calow, R. C. (2019). Groundwater and resilience to drought in the Ethiopian Highlands. Environmental Research Letters. 14(9): 1-9.
21. Madani, k. (2010). Towards Sustainable Watershed Management: Using System Dynamics for Integrated Water Resource Planning VDM Publishing.
22. Madani, k. (2016). Editorial. “Water Crisis in Iran: A Desperate Call for Action”. Tehran Times. May7, http://www.tehrantimes.com/news/301198/water-crisis-in-Iran-A-desperate-call-for-action.
23.Mohammadi, M., & Rezaei, J. (2019). Bayesian best-worst method: A probabilistic group decision making model. Omega. 96 (10):1-9.
24.Nadiri, A. A., Gharekhani, M., Khatibi, R., Sadeghfam, S., & Moghaddam, A. A. (2017). Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM). Science of the Total Environment. 574:  691-706.
25. Parsons, M., & Thoms, M. C. (2017). From academic to applied: Operationalising resilience in river systems. Geomorphology. 305(3): 242-251.
26. Roach, T., Kapelan, Z. & Ledbetter, R. (2018). Resilience-based performance metrics for water resources management under uncertainty. Advances in Water Resources. 116: 18-28.
27. Samani., N. (2017). Management of Surface and Groundwater Relationship to Adapt to Water Crisis, Analytical Modeling, First Conference on Shiraz Ecological Resilience, Shiraz, Shiraz Municipality. Davos, Switzerland.
28. UNESCO-WWAP. (2012). Managing water under un- certainty and risk. The United Nations World Water Development report (WWDR). Part of the UN World Water Assessment Program me (WWAP), UNESCO. Paris.
29. Vrba., J. & Verhagen, B. (2011). Groundwater for Emergency Situations A Methodological Guide. IHP-VII Series on Groundwater. International Hydrological Programme Division of Water Sciences. (3): 1-317.