Streamflow Forecasting Using Wavelet- Gene Expression Programming Hybrid Approach and Assessing the Effects of Meteorological Parameters on its Capability

Document Type : Research Paper


1 MSc Student, Department of Water Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran

2 Assistant Professor, Department of Water Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran


Forecasting stream flow is very important for planning and managing water resources systems and its precision has a significant role in accurately implementing the planned objectives. Besides, soft computing has a significant ability in modelling hydrologic processes. Therefore, in the present study, the Hybrid Wavelet-Gene Expression Programming model has been developed in comparison with its singular approach so that it forecasts the daily streamflow of Khoshkroud river located in Guilan province. For this purpose, in addition to the process of pre-processing hydrometric data, the effect of meteorological parameters on the model’s performance and efficiency has been studied. Also, pre-processing was performed with different properties and for four durations of one, two, three and six days. Correlation coefficient (R), index of agreement (Ig), Nash-Sutcliffe coefficient (NSE), mean absolute error (MAE), root-mean-square error (RMSE) and peak flow criteria(PFC) statistical indices were used to assess the models’ performances. The results show that using wavelet transform to pre-process hydrometric data will significantly improve the efficiency of the hybrid model in comparison with the singular model, such that the correlation coefficient of the validation data for three days has increased from 0.27 to 0.80 and similarly, the mean absolute error has decreased from 1.4 to 0.80 m3/Sec. On the other hand, meteorological parameters have caused the extreme values in the river’s flow rate time series to be well modelled and their efficiency in the extreme values to be significantly increased. The results obtained from this research express that the hybrid model alongside the meteorological parameters can be successfully and efficiently used in flow forecasting.


1. آبابایی، ب.، سهرابی، ت.، و میرزایی اصلی، ف. (1392). شبیه‌سازی جریان روزانه ورودی به سد طالقان با استفاده از مدل‌های همراشتین- واینر. مدیریت آب و آبیاری. 3 (1): 12- 1.
2. چمنی، م.، و روشنگر، ک. (1398). ارزیابی مدل تلفیقی تجزیه مد تجربی یکپارچه کامل- گاوسی در پیش­بینی زمانی و مکانی دبی رودخانه. مدیریت آب و آبیاری. 9 (2): 289-277.
3. شریف­آذری، س.، و عراقی­نژاد، ش. (1392). توسعة مدل ناپارامتری شبیه­ساز داده­های ماهانة هیدرولوژیکی. مدیریت آب و آبیاری. 3 (1): 95-81.
4. نبی­زاده، م.، مساعدی، ا.، و دهقانی، ا. ا. (1391). تخمین هوشمند دبی روزانه با بهره­گیری از سامانه استنباط فازی - عصبی تطبیقی. مدیریت آب و آبیاری. 2 (1): 95-83.
5. Abdollahi, S., Raeisi, J., Khalilianpour, M., Ahmadi, F., & Kisi, O. (2017). Daily mean streamflow prediction in perennial and non-perennial rivers using four data driven techniques. Water Resources Management31(15), 4855-4874.
6. Adamowski, J. F. (2008). River flow forecasting using wavelet and cross‐wavelet transform models. Hydrological Processes: An International Journal, 22(25), 4877-4891.
7. Anctil, F., & Ramos, MH. (2019). Verification metrics for hydrological ensemble forecasts. Handbook of Hydrometeorological Ensemble Forecasting; Springer: Berlin/Heidelberg, Germany, 893-922.
8. Banihabib, M. E., & Mousavi-Mirkalaei, P. (2019). Extended linear and non-linear auto-regressive models for forecasting the urban water consumption of a fast-growing city in an arid region. Sustainable Cities and Society48, 101585.
9. Boggess, A., Narcowich, FJ., Donoho, DL., & Donoho, PL. (2002). A first course in wavelets with Fourier analysis. Physics Today, 55(5), 63.
10. Diop, L., Bodian, A., Djaman, K., Yaseen, Z. M., Deo, R. C., El-Shafie, A., & Brown, L. C. (2018). The influence of climatic inputs on stream-flow pattern forecasting: case study of Upper Senegal River. Environmental earth sciences77(5), 182.
11. Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems. arxiv preprint cs/0102027.
12. Freire, P. K. D. M. M., Santos, C. A. G., & da Silva, G. B. L. (2019). Analysis of the use of discrete wavelet transforms coupled with ANN for short-term streamflow forecasting. Applied Soft Computing80, 494-505.
13. Hadi, S. J., & Tombul, M. (2018). Monthly streamflow forecasting using continuous wavelet and multi-gene genetic programming combination. Journal of Hydrology561, 674-687.
14. Khairuddin, N., Aris, A. Z., Elshafie, A., Sheikhy Narany, T., Ishak, M. Y., & Isa, N. M. (2019). Efficient forecasting model technique for river stream flow in tropical environment. Urban Water Journal16(3), 183-192.
15. Kim, K. J., Kim, Y. O., & Kang, T. H. (2017). Application of time-lagged ensemble approach with auto-regressive processors to reduce uncertainties in peak discharge and timing. Journal of Hydrology: Regional Studies9, 140-148.
16. Kisi, O., Shiri, J., & Tombul, M. (2013). Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 51, 108-17.
17. Li, F. F., Wang, Z. Y., & Qiu, J. (2019). Long‐term streamflow forecasting using artificial neural network based on preprocessing technique. Journal of Forecasting38(3), 192-206.
18. Maheswaran, R., & Khosa, R. (2012). Comparative study of different wavelets for hydrologic forecasting. Computers & Geosciences46, 284-295.
19. Mehdizadeh, S., Fathian, F., & Adamowski, J. F. (2019). Hybrid artificial intelligence-time series models for monthly streamflow modeling. Applied Soft Computing80, 873-887.
20. Mehr, A. D. (2018). An improved gene expression programming model for streamflow forecasting in intermittent streams. Journal of hydrology563, 669-678. 
21. Mehr, A. D., & Nourani, V. (2017). A Pareto-optimal moving average-multigene genetic programming model for rainfall-runoff modelling. Environmental modelling & software92, 239-251.
22. Mehr, A. D., Nourani, V., Kahya, E., Hrnjica, B., Sattar, A. M., & Yaseen, Z. M. (2018). Genetic programming in water resources engineering: a state-of-the-art review. Journal of hydrology566, 643-667.
23. Nourani, V., Baghanam, A. H., Adamowski, J., & Kisi, O. (2014). Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. Journal of Hydrology514, 358-377.
24. Nourani, V., Komasi, M., & Alami, MT. (2012). Hybrid wavelet–genetic programming approach to optimize ANN modeling of rainfall–runoff process. Journal of Hydrologic Engineering, 17(6), 724-41.
25. Phukoetphim, P., Shamseldin, A. Y., & Adams, K. (2012). Multimodel Approach Using Neural Networks and Symbolic Regression to Combine the Estimated Discharges of Rainfall-Runoff Models. Journal of Hydraulic Engineering, 17 (9), 975-985.
26. Ravansalar, M., Rajaee, T., & Kisi, O. (2017). Wavelet-linear genetic programming: a new approach for modeling monthly streamflow. Journal of Hydrology549, 461-475.
27. Rezaie-Balf, M., Kim, S., Fallah, H., & Alaghmand, S. (2019). Daily river flow forecasting using ensemble empirical mode decomposition based heuristic regression models: Application on the perennial rivers in Iran and South Korea. Journal of Hydrology572, 470-485.
28. Ritter, A., & Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology480, 33-45.
29. Sang, Y. F. (2013). A review on the applications of wavelet transform in hydrology time series analysis. Atmospheric research122, 8-15.
30. Shahabi, S., Khanjani, M. J., & Kermani, M. R. H. (2017). Significant wave height modelling using a hybrid Wavelet-genetic Programming approach. KSCE Journal of Civil Engineering21(1), 1-10.
31. Shiri, J., & Kisi O. (2010). Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. Journal of Hydrology, 394(3-4), 486-93.
32. Shoaib, M., Shamseldin, AY., Melville, BW., & Khan, MM. (2015). Runoff forecasting using hybrid wavelet gene expression programming (WGEP) approach. Journal of Hydrology, 527, 326-44.
33. Tikhamarine, Y., Souag-Gamane, D., Ahmed, A. N., Kisi, O., & El-Shafie, A. (2020). Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm. Journal of Hydrology582, 124435.
34. Wang, WC., Chau, KW., Xu DM., & Chen, XY. (2015). Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resources Management, 29(8), 2655-75.
35. Willmott, CJ. (1981). On the validation of models. Physical geography, 2(2), 184-94.
36. Xie, T., Zhang, G., Hou, J., Xie, J., Lv, M., & Liu, F. (2019). Hybrid Forecasting Model for Non-Stationary Daily Runoff Series: A Case Study in the Han River Basin, China. Journal of Hydrology, 123915.
37. Yaseen, ZM., El-Shafie, A., Jaafar, O., Afan, HA., & Sayl, KN. (2015). Artificial intelligence based models for stream-flow forecasting: 2000-2015. Journal of Hydrology, 530, 829-44.
38. Yin, Z., Feng, Q., Wen, X., Deo, R. C., Yang, L., Si, J., & He, Z. (2018). Design and evaluation of SVR, MARS and M5Tree models for 1, 2 and 3-day lead time forecasting of river flow data in a semiarid mountainous catchment. Stochastic Environmental Research and Risk Assessment32(9), 2457-2476.
39. Zhang, X., Tuo, W., & Song, C. (2019). Application of MEEMD-ARIMA combining model for annual runoff prediction in the Lower Yellow River. Journal of Water and Climate Change.