1. آبابایی، ب.، سهرابی، ت.، و میرزایی اصلی، ف. (1392). شبیهسازی جریان روزانه ورودی به سد طالقان با استفاده از مدلهای همراشتین- واینر. مدیریت آب و آبیاری. 3 (1): 12- 1.
2. چمنی، م.، و روشنگر، ک. (1398). ارزیابی مدل تلفیقی تجزیه مد تجربی یکپارچه کامل- گاوسی در پیشبینی زمانی و مکانی دبی رودخانه. مدیریت آب و آبیاری. 9 (2): 289-277.
3. شریفآذری، س.، و عراقینژاد، ش. (1392). توسعة مدل ناپارامتری شبیهساز دادههای ماهانة هیدرولوژیکی. مدیریت آب و آبیاری. 3 (1): 95-81.
4. نبیزاده، م.، مساعدی، ا.، و دهقانی، ا. ا. (1391). تخمین هوشمند دبی روزانه با بهرهگیری از سامانه استنباط فازی - عصبی تطبیقی. مدیریت آب و آبیاری. 2 (1): 95-83.
5. Abdollahi, S., Raeisi, J., Khalilianpour, M., Ahmadi, F., & Kisi, O. (2017). Daily mean streamflow prediction in perennial and non-perennial rivers using four data driven techniques. Water Resources Management, 31(15), 4855-4874.
6. Adamowski, J. F. (2008). River flow forecasting using wavelet and cross‐wavelet transform models. Hydrological Processes: An International Journal, 22(25), 4877-4891.
7. Anctil, F., & Ramos, MH. (2019). Verification metrics for hydrological ensemble forecasts. Handbook of Hydrometeorological Ensemble Forecasting; Springer: Berlin/Heidelberg, Germany, 893-922.
8. Banihabib, M. E., & Mousavi-Mirkalaei, P. (2019). Extended linear and non-linear auto-regressive models for forecasting the urban water consumption of a fast-growing city in an arid region. Sustainable Cities and Society, 48, 101585.
9. Boggess, A., Narcowich, FJ., Donoho, DL., & Donoho, PL. (2002). A first course in wavelets with Fourier analysis. Physics Today, 55(5), 63.
10. Diop, L., Bodian, A., Djaman, K., Yaseen, Z. M., Deo, R. C., El-Shafie, A., & Brown, L. C. (2018). The influence of climatic inputs on stream-flow pattern forecasting: case study of Upper Senegal River. Environmental earth sciences, 77(5), 182.
11. Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems. arxiv preprint cs/0102027.
12. Freire, P. K. D. M. M., Santos, C. A. G., & da Silva, G. B. L. (2019). Analysis of the use of discrete wavelet transforms coupled with ANN for short-term streamflow forecasting. Applied Soft Computing, 80, 494-505.
13. Hadi, S. J., & Tombul, M. (2018). Monthly streamflow forecasting using continuous wavelet and multi-gene genetic programming combination. Journal of Hydrology, 561, 674-687.
14. Khairuddin, N., Aris, A. Z., Elshafie, A., Sheikhy Narany, T., Ishak, M. Y., & Isa, N. M. (2019). Efficient forecasting model technique for river stream flow in tropical environment. Urban Water Journal, 16(3), 183-192.
15. Kim, K. J., Kim, Y. O., & Kang, T. H. (2017). Application of time-lagged ensemble approach with auto-regressive processors to reduce uncertainties in peak discharge and timing. Journal of Hydrology: Regional Studies, 9, 140-148.
16. Kisi, O., Shiri, J., & Tombul, M. (2013). Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 51, 108-17.
17. Li, F. F., Wang, Z. Y., & Qiu, J. (2019). Long‐term streamflow forecasting using artificial neural network based on preprocessing technique. Journal of Forecasting, 38(3), 192-206.
18. Maheswaran, R., & Khosa, R. (2012). Comparative study of different wavelets for hydrologic forecasting. Computers & Geosciences, 46, 284-295.
19. Mehdizadeh, S., Fathian, F., & Adamowski, J. F. (2019). Hybrid artificial intelligence-time series models for monthly streamflow modeling. Applied Soft Computing, 80, 873-887.
20. Mehr, A. D. (2018). An improved gene expression programming model for streamflow forecasting in intermittent streams. Journal of hydrology, 563, 669-678.
21. Mehr, A. D., & Nourani, V. (2017). A Pareto-optimal moving average-multigene genetic programming model for rainfall-runoff modelling. Environmental modelling & software, 92, 239-251.
22. Mehr, A. D., Nourani, V., Kahya, E., Hrnjica, B., Sattar, A. M., & Yaseen, Z. M. (2018). Genetic programming in water resources engineering: a state-of-the-art review. Journal of hydrology, 566, 643-667.
23. Nourani, V., Baghanam, A. H., Adamowski, J., & Kisi, O. (2014). Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. Journal of Hydrology, 514, 358-377.
24. Nourani, V., Komasi, M., & Alami, MT. (2012). Hybrid wavelet–genetic programming approach to optimize ANN modeling of rainfall–runoff process. Journal of Hydrologic Engineering, 17(6), 724-41.
25. Phukoetphim, P., Shamseldin, A. Y., & Adams, K. (2012). Multimodel Approach Using Neural Networks and Symbolic Regression to Combine the Estimated Discharges of Rainfall-Runoff Models. Journal of Hydraulic Engineering, 17 (9), 975-985.
26. Ravansalar, M., Rajaee, T., & Kisi, O. (2017). Wavelet-linear genetic programming: a new approach for modeling monthly streamflow. Journal of Hydrology, 549, 461-475.
27. Rezaie-Balf, M., Kim, S., Fallah, H., & Alaghmand, S. (2019). Daily river flow forecasting using ensemble empirical mode decomposition based heuristic regression models: Application on the perennial rivers in Iran and South Korea. Journal of Hydrology, 572, 470-485.
28. Ritter, A., & Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33-45.
29. Sang, Y. F. (2013). A review on the applications of wavelet transform in hydrology time series analysis. Atmospheric research, 122, 8-15.
30. Shahabi, S., Khanjani, M. J., & Kermani, M. R. H. (2017). Significant wave height modelling using a hybrid Wavelet-genetic Programming approach. KSCE Journal of Civil Engineering, 21(1), 1-10.
31. Shiri, J., & Kisi O. (2010). Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. Journal of Hydrology, 394(3-4), 486-93.
32. Shoaib, M., Shamseldin, AY., Melville, BW., & Khan, MM. (2015). Runoff forecasting using hybrid wavelet gene expression programming (WGEP) approach. Journal of Hydrology, 527, 326-44.
33. Tikhamarine, Y., Souag-Gamane, D., Ahmed, A. N., Kisi, O., & El-Shafie, A. (2020). Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm. Journal of Hydrology, 582, 124435.
34. Wang, WC., Chau, KW., Xu DM., & Chen, XY. (2015). Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resources Management, 29(8), 2655-75.
35. Willmott, CJ. (1981). On the validation of models. Physical geography, 2(2), 184-94.
36. Xie, T., Zhang, G., Hou, J., Xie, J., Lv, M., & Liu, F. (2019). Hybrid Forecasting Model for Non-Stationary Daily Runoff Series: A Case Study in the Han River Basin, China. Journal of Hydrology, 123915.
37. Yaseen, ZM., El-Shafie, A., Jaafar, O., Afan, HA., & Sayl, KN. (2015). Artificial intelligence based models for stream-flow forecasting: 2000-2015. Journal of Hydrology, 530, 829-44.
38. Yin, Z., Feng, Q., Wen, X., Deo, R. C., Yang, L., Si, J., & He, Z. (2018). Design and evaluation of SVR, MARS and M5Tree models for 1, 2 and 3-day lead time forecasting of river flow data in a semiarid mountainous catchment. Stochastic Environmental Research and Risk Assessment, 32(9), 2457-2476.
39. Zhang, X., Tuo, W., & Song, C. (2019). Application of MEEMD-ARIMA combining model for annual runoff prediction in the Lower Yellow River. Journal of Water and Climate Change.