Assessment of Vulnerability Index and Risk Zoning in Ardabil Plain

Document Type : Research Paper

Authors

1 Ph.D. Candidate in Watershed Science and Engineering, Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Karaj, Iran

2 Associate Professor, Department of Reclamation of Arid and Mountainous Region, Faculty of Natural Resources,, University of Tehran, Karaj, Iran.

3 Associate Professor, Department of Reclamation of Arid and Mountainous Region, Faculty of Natural Resources, University of Tehran, Karaj, Iran.

Abstract

Determining the vulnerability and risk of groundwater is a good approach for groundwater management with reliable and accurate models, taking into account surface pollutants, the ability to contaminate groundwater, and the pathways affecting wells. In the present study, this evaluation is based on a new index with three factors of pollutant point source density, intrinsic vulnerability and contamination range of wells presented for a groundwater aquifer in Ardabil. A modified version of the Drastic method was used to map the intrinsic groundwater vulnerability of the study area to an area of 886 square kilometers. Density of point source pollutants were measured such as industries, villages, gas stations in the sub basins and used as potential indicators of point source pollutants. Numerical modeling was also performed to determine the catchment areas using MODFLOW and MODPATH models. The spatial and descriptive integration of these three factors created a mechanism and vulnerability index for assessing the risks of groundwater contamination as well as identifying and prioritizing areas requiring groundwater monitoring. The parameters used in this method were sensitivity analysis. The results of this index were calibrated based on nitrate and chloride concentration which had a positive correlation with the vulnerability index. Groundwater vulnerability and risk index values vary from zero to one thousand with respect to the integration of 3 factors with a value range of 10. The value of this index was low in most of the lowlands. But maximum values of this index were in populated areas, high roads and industrial areas in Ardabil plain. In general, according to this indicator, Ardabil plain is at low vulnerability and risk. This research will lead to a rigorous and cost-effective approach to protecting drinking and agricultural water resources and achieving sustainable groundwater for future generations.

Keywords


1. بانژاد، ح. محب‌زاده، ح. قبادی، م. و حیدری، م. (1392). شبیه‌سازی عددی جریان و انتقال آلودگی در آب‌های زیرزمینی مطالعه موردی: آبخوان دشت نهاوند، دانش آب و خاک. 23 (2): 43-57.
2. بختیاری عنایت، ب.، ملکیان، آ. و سلاجقه، ع. (1395). منظور ارزیابی آسیب‌پذیری آب زیرزمینی با استفاده از روش‌های ترکیبی دراستیک اصلاح‌شده، رگرسیون لجستیک و تحلیل سلسله مراتبی دراستیک در دشت هشتگرد. تحقیقات آب و خاک ایران، 47 (2): 269-279.
3. جودوی، ع.ا.. و خزائی، ص. (1395). ارائه یک روش جدید برای ارزیابی ریسک آلودگی منابع آب زیرزمینی بر پایه سامانه اطلاعات جغرافیایی و مدل‌سازی عددی در شهرستان فیروزه در استان خراسان رضوی. آبیاری و زهکشی ایران. 10(2): 241-251.
4. خدایی،ک.، شهسواری، ع. ا. و اعتباری، ب. (1385) . ارزیابی آسیب‌پذیری آبخوان دشت جوین به روش‌های GODS و DRASTIC فصلنامه زمین‌شناسی ایران. 2(4): 73-87.
5. سعادتی، ح.، شریفی، ف.، مهدوی م.، احمدی، ح. و محسنی‌ساروی، م. (1388). ارزیابی منشأیابی منابع تغذیه‌کننده‌ آب سفره زیرزمینی و تعیین دوره‌های تر و خشک‌سالی با ردیآب‌های پرتوزا (مطالعه موردی: دشت هشتگرد). مرتع و آبخیز، منابع طبیعی ایران، 62(1): 49-63.
6. سعادتی، ح. (1395). ارزیابی تغییرات اقلیم دیرینه به‌کمک ردیاب شیمیایی کلر در رسوبات منطقه غیراشباع دشت اردبیل. علمی-پژوهشی مهندسی و مدیریت آبخیز. 8(3): 310-323.
7. شرکت آب منطقه‌ای اردبیل. (1397). مطالعات نیمه‌تفصیلی حوضه آبریز دشت اردبیل و دوره بیلان سال آبی 1365-1396 جلد پنجم مدل سفره آب زیرزمینی دشت اردبیل. شرکت مهندسین مشاور قدس نیرو. 182 صفحه.
8. قدرتی، م. (1391). مدل‌های ریاضی آب‌های زیرزمینی آموزش کاربردی مدل GMS. جلد 1. سیمای دانش. تهران. 270 صفحه.
9. ندیری، ع. ا.، اکبری، ا.، عباس نوین پور، ا. و قره خانی، م. (1398). ارزیابی آسیب‌پذیری آبخوان دشت خوی با استفاده از روش ترکیبی. مدیریت آب و آبیاری. 9 (2): 251-262
 
10. Aller, L., Lehr, J. H., Petty, R. & Bennett, T. (1987). Drastic: a standhrdized system to evaluate ground water pollution potential using hydrugedlugic settings. Journal of Geological Society of India, 29(1), pp 622.
11. Bear, J. & Cheng, A.H.-D. (2016) Modeling Groundwater Flow and Contaminant Transport. Theory and Applications of Transport in Porous Media. Berlin: Springer.
12. Bedient, P.B. & Huber, W.C., (1992). Hydrology and Floodplain Analysis, 2nd edition. New York: Addison-Wesley Publishing Company.
13. Chowdhury, S.H., Kehew, A.E. & Passero, R.N. (2003). Correlation between nitrate contamination and groundwater pollution potential. Ground Water, 41 (6), 735- 745.
14. Connell, L.D. & Daele, G., (2003). A quantitative approach to aquifer vulnerability mapping. Journal of Hydrology,276(1-4),71-88.
15. ESRI (Environmental Systems Research Institute Inc). (2018). Understanding GIS the ArcInfo Method: Redland, California. ESRI Press.
16. Journel, A.G. & Huijbregts, C.J. (1978). Mining Geostatistics. New York: Academic Press.
17. Mcdonald, M.C., Harbaugh, A.W., (1996). MODFLOW-96-User's Documentation for MODFLOW-96. An Update to the U.S. Geological Survey Modular Three-dimensional Finite Difference Groundwater Flow Model. Open-File Report: 96-485.
18. Melloul, A.J. & Collin, M. (1998). A proposed index for aquifer water quality assessment: the case of Israel's Sharon region. Journal of Environmental Management, 54(2), 131-142.
19. Nobre, R.C.M. & Nobre, M.M.M. (2004). Natural attenuation of chlorinated organics in a shallow sand aquifer. Journal of Hazardous Materials, 110(1-3), 129-137.
20. Nobre R.C.M., Rotunno Filho O.C., Mansur W.J., Nobre M.M.M. & Cosenza, C.A.N. (2007). Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. Journal of Contaminant Hydrology, 94(3-4), 277-292.
21. Pollock, D.W. (1989). MODPATH-a computer program to complete and display pathlines using results from MODFLOW. Open-File Report. U.S. Geological Survey, Reston, VA, pp. 89-381.
22. Powell, K.L., Taylor, R.G., Cronin, A.A., Barrett, M.H., Pedley, S., Sellwood, J., Trowsdale, S.A. & Lerner, D.N. (2003). Microbial contamination of two urban sandstone aquifers in the UK. Water Research, 37(2), 339-352.
 
23. Secunda, S., Collin, M.L. & Melloul, A.J. (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel's Sharon region. Journal of Environmental Management, 54(1), 39-57.
24. Sililo, T.N. & Appleyard, S. (2004). Shallow porous aquifers in Mediterranean climates. Urban Groundwater Pollution, Chapter 9. A.A. The Netherlands: Balkema Publishers.
25. Stephen Foster, Ricardo Hirata, Daniel Gomes, Monica D’Elia M, arta Paris. (2007). Groundwater Quality Protection. Groundwater Management Advisory Team (GW•MATE) in association with the Global Water Partnership.
26. Tait, N.G., Lerner, D.N., Smith, J.W.N. & Leharne, S.A. (2004). Priorisation of abstraction boreholes at risk from chlorinated solvent contamination on the UK Permo-Triassic Sandstone aquifer using a GIS. Science of the Total Environment, 319(1-3), 77-98.
27. Worrall, F. & Kolpin, D.W. (2003). Direct assessment of groundwater vulnerability from single observations of multiple contaminants. Water Resources Research, 39 (12), 1345-1352.