Effect of irrigation with wastewater on lead and cadmium accumulations in the soils and plants of wheat and barley

Document Type : Research Paper


1 Graduated M.Sc. of Environment, Natural Resources and Environment Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Assistant Professor, Department of Environment, Technical and Engineering Faculty, North Tehran Branch, Islamic Azad University, Tehran, Iran

3 Assistant Professor, Department of Environmental Science, Natural Resources and Environment Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran


By considering the lack of high-quality water resources, the use of refined sewage as cheaply available water resources can reduce the challenge for water demand in Iran. This research aimed to investigate the accumulation of lead and cadmium in soil and seed of wheat and barley crops that are irrigated by refined sewage and a mixture of unrefined sewage and well water, respectively, in Qods city. During two growth months (March and May 2017), every ten days, one sample of each treatment was investigated to evaluate the physical and chemical properties of incoming water (totally nine samples per treatment). Sixty samples (30 samples from each plant) were randomly harvested. For soil measurement, 30 samples were randomly sampled in each filed (May 2017). The results showed that the values of EC, biological and chemical oxygen demands, lead and cadmium concentrations were more in the mixture of well water and unrefined water than refined water. There was no significant difference between the cadmium concentrations in the seeds of the two plants; however, the lead concentration in the seeds of barely was significantly more than wheat. The differences in the mean of lead and cadmium concentrations in the soil of two plants were not significant. The results of the bioconcentration factor i showed that none of the plant’s ability to extract lead and cadmium. Only the concentration of lead metal in barley is higher than the World Health Organization standard, which indicates that the grain produced in this field is harmful to human consumption.


  1. بیگی هرچگانی ح. و بنی طالبی گ (1392) اثر بیست­وسه سال آبیاری سطحی با پساب شهری بر انباشت بعضی فلزات سنگین در خاک، انتقال به دانه‌های گندم و ذرت و خطرات بهداشتی مرتبط. آب و خاک. 27 (3). 570- 580.
  2. پیرصاحب م.، شرفی ک. و دوگوهر ک (1390) مقایسه کیفیت پساب تصفیه‌خانه اولنگ مشهد با آب چاه‌های منطقه برای آبیاری. آب و فاضلاب. 42: 36-46.
  3. خانبلوکی گ.، میرسید حسینی ح. و متشرع­زاده ب (1394) تأثیر افزایش غلظت دی­اکسید کربن اتمسفری و کادمیم خاک در جذب کادمیم توسط گندم و سورگوم. مدیریت خاک و تولید پایدار. 5(4): 113-97.
  4. رحیمی ق.، امرایی ل. و کیمیایی­طلب ع. ر (1394) اثر آبیاری با پساب صنعتی بر روند تغییرات برخی فلزات سنگین در خاک و گیاه تربچه (Raphanus sativus). علوم و فنون کشت­های گلخانه­ای. 6(24): 30-11.
  5. عسگری ع. و الباجی م (1396) بررسی امکان استفاده از پساب در کشاورزی (مطالعه موردی: پساب تصفیه‌خانه فاضلاب شهری شهرکرد). پژوهش‌های حفاظت آب و خاک. 24(2): 308-303.
  6. فرمانی­فرد م.، قمرنیا ه.، پیرصاحب م. و فتاحی ن (1395) مطالعه تجمع فلزات سنگین در محصولات مختلف تحت تأثیر آبیاری با فاضلاب تصفیه‌شده شهری کرمانشاه. مدیریت آب و آبیاری. 6(2): 365-347.
  7. ملکی ع.، حسین‌نژاد ا. و عالی‌نژادیان بیدآبادی ا (1395) تجزیه و تحلیل غلظت فلزات سنگین در خاک آبیاری‌شده با پساب شهری در کشت فلفل دلمه‌ای. مدیریت آب و آبیاری. 6(1): 101-115.
  8. میرزایی تختگاهی ح.، قمر نیا ه.، پیرصاحب م. و فتاحی ن (1395) بررسی تأثیر آبیاری با آب آلوده بر تجمع فلزات سنگین در گندم و جعفری. مدیریت آب و آبیاری. 6(2): 315-329.
  9. ناصری س.، صادقی ط.، واعظی ف. و ندافی ک (1391) بررسی کیفیت پساب تصفیه‌خانه فاضلاب اردبیل به‌منظور استفاده مجدد در کشاورزی. سلامت و بهداشت. 3(3): 80- 73.
  10. یزدانی ع.، صفاری م. و رنجبر غ (1396) اثر آبیاری با فاضلاب شهری تصفیه‌شده بر عملکرد دانه و تجمع فلزات سنگین در دانه ژنوتیپ­های جو. علوم زراعی ایران. 19(4): 296-284.

11. Agraval, S.K. (2002). Pollution management: water pollution. A.P.H. publication A.P.H. Publishing Corporation, New Delhi. 384 p.

12. Ahmed, D.A. & Slima, D.F. (2018). Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater. Environmental Science and Pollution Research, 25(15): 14996-15005.

13. Alghobar, M.A. & Suresha, S. (2015). Evaluation of nutrients and trace metals and their enrichment factors in soil and sugarcane crop irrigated with wastewater. Geoscience and Environment Protection. 3: 46-56.

14. Aydinalp, C., Fitzpatric, E.A. & Cresser, M.S. (2005). Heavy metal pollution in some soil and water resources of Bursa Province, Turkey. Communications of Soil Science, 36: 1691-1716.

15. Ayers, R.S. & Westcot, D.W. (1985). Water quality for agriculture 29th Ed. Food and Agriculture Organization of the United Nations Rome, USA, 174p.

16. Belhaj, B., Jerbi, B., Medhioub, M., Zhou, J., Kallel, M. & Ayadi, H. (2016). Impact oftTreated urban wastewater for reuse in agriculture on crop response and soil ecotoxicity. Environment Science and Pollution Research, 23(16): 15877-15887.

17. Campbell, C.R. & Plank, C.O. (1998). Preparation of plant tissue for laboratory analysis. In: Kalra YP (Ed.), Handbook of Reference Methods for Plant Analysis. CRC Press, Taylor & Francis Group, pp. 37-50

18. Dotaniya, M.L., Rajendiran, S., Meena, V.D., Coumar, M.V., Saha, J.K., Kundu, S. & Patra, A.K. (2018). Impact of Long-Term Application of Sewage on Soil and Crop Quality in Vertisols of Central India. Bulletin of Environmental Contamination and Toxicology, 101: 779-786.

19. FAO. (1992). Wastewater treatment and use in agriculture-FAO irrigation and drainage paper 47. Food and Agriculture Organization of the United Nations, Rome, 169 p.

20. Hakimi, L., Sadeghi, S.M., Van Stan, J.T., Pypker, T.G. & Khosropour, E. (2018). Management of pomegranate (Punica granatum) orchards alters the supply and pathway of rain water reaching soils in an arid agricultural landscape. Agriculture, Ecosystems and Environemnt, 259: 77-85.

21. Ji, Y., Wu, P., Zhang, J., Zhang, J., Zhou, Y., Peng, Y., Zhang, S., Cai, G. & Gao, G. (2018). Heavy metal accumulation, risk assessment and integrated biomarker responses of local vegetables: A case study along the Le'an river. Chemosphere, 199: 361-371.

22. Jung, K., Jang, T., Jeong, H. & Park, S. (2014). Assessment of growth and yield components of rice irrigated with reclaimed wastewater. Agricultural Water Management, 138: 17-25.

23. Kabata-Pendias, A. & Mukherjee, A.B. (2007). Trace Elements from Soil to Human, Springer Science & Business Media, 550 p.

24. Khaliq, S.J., Al-Busaidi, A., Ahmed, M., Al-Wardy, M., Agrama, H. & Choudri, B.S. (2017). The effect of municipal sewage sludge on the quality of soil and crops.  Recycling of Organic Waste in Agriculture, 6(4): 289-299.

25. Pedrero, F. Alarcon, J. (2009). Effects of treated wastewater irrigation on lemon trees. Desalination, 246: 631-639.

26. Golrizkhatami, F., Farsad, F. & Rafati, M. (2018). The Combined Effect of EDTA and Vermicompost on Removal of Lead from Soil by Ocimum basilicum.  Water, Environment and Pollution, 15(4): 41-45.

27. Salakinkop, S.R. & Hunshal, C.S. (2014) Domestic sewage irrigation on dynamics of nutrients and heavy metals in soil and wheat (Triticum aestivum L.) production. Recycling of Organic Waste in Agriculture, 3(3): 1-11.

28. Shaw, J. (1989). Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press. Taylor & Francis Group, 286 p.

29. Vazquez, S., Goldsbrough, P. & Carpena, R.O. (2009). Comparative analysis of the contribution of phytochelatins to cadmium and arsenic tolerance in soybean and white lupen. Plant Physioly and Biochemistry, 47: 63-67.

30. WHO. (2011). Joint FAO/WHO food standards programme, codex committee on contaminants in foods. Fifth session. The Hague, the Netherlands. CF/5 INF/1.