Effective Rain Zoning In Khuzestan Province under Autumn Rainfed Wheat Cultivation

Document Type : Research Paper

Authors

1 Department of Irrigation and Reclamation Engineering, Faculty of Agriculture Engineering & Technology, College of Agriculture and Natural Resources, University of Tehran.

2 Department of Irrigation and Reclamation Engineering, Faculty of Agriculture Engineering & Technology, College of Agriculture and Natural Resources, University of Tehran

Abstract

The meteorological data of 12 synoptic stations of Khuzestan province with a 20-year statistical period (1999-2018) were used to perform the present study. First, using CROPWAT software, the effective rainfall was estimated from three methods USDA, FAO and the developed experimental formula. Using AquaCrop software, real transpiration evaporation of rainfed wheat in the study area was calculated and effective rainfall amount was obtained. Then, using ArcGIS software, effective rainfall zoning at the stations studied was drawn in November, December, January, February and March. Relative error (RE) results showed that in the three most rainy months of November, December and January, the best estimation of rain was the experimental method with mean error of -8.8 percent, FAO with -21.7 percent and experimental with 12.9 percent, respectively compared to the inverse solution method. In the low rainfall months of February and March, the USDA method had the best estimation of the effective rain of these three methods with the inverse solution method with -48.6 percent and -51.6 percent, respectively. The zoning map of the estimated effective rainfall also showed that in the rainy months and when the plant is in early growth, the amount of effective rainfall increases by moving from the north side of the province to the southern part. The overall results show that the percentage of confidence in the experimental methods is low and by calculating the effective rainfall and changing the date of cultivation at the country level can increase the productivity and production of rainfed crops.

Keywords


  1. اسدزاده شرفه، ح. و رئوف، م. (1397). مقایسه کارایی مصرف آب در سیستم‌های آبیاری بارانی و هیدروفلوم (مطالعه موردی: دشت اردبیل). مدیریت آب و آبیاری. 8 (1): 68-55.
  2. توان پور، ن. و قائمی، ع. ا. (1395). پهنه‌بندی استان فارس از نظر کشت گندم پاییزه دیم براساس پارامتر بارش و عوامل مورفولوژیکی. آبیاری و زهکشی ایران. 4 (10): 555-544.
  3. حمدی احمدآباد، ی.، لیاقت، ع.، رسول زاده، ع. و قادرپور، ر. (1398). بررسی روند سرانه مصرف آب در ایران براساس رژیم غذایی دو دهه گذشته. تحقیقات آب و خاک ایران. 50 (1): 87-77.
  4. خالقی، ن. (1394). مقایسه روش­های برآورد بارش مؤثر در کشاورزی. آب و توسعه پایدار. 2 (2): 58-51.
  5. خوشحال دستجردی، ج. و جوشنی، ع. ر. (1391). برآورد مناسب‌ترین شیوه محاسبه بارش مؤثر برای کشت گندم پاییزه در حوزه دریاچه نمک. مطالعات جغرافیایی مناطق خشک. 3 (9-10): 169-153.
  6. دلاور، ن.، اخوان، س. و محنت کشف، ع. م. (1396). اثر تغییر اقلیم بر برخی شاخص‏های مؤثر در رشد گندم (مطالعه موردی: استان چهارمحال و بختیاری). علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی). 2(21): 149-131.
  7. ذبیحی، ا.، درزی نفت چالی، ع. و خوش‌روش، م. (1395). آنالیز اثر تنش خشکی بر عملکرد، کارایی مصرف آب و شوری ناحیه ریشه برنج. تنش‌های محیطی در علوم زراعی. 9 (4): 385-375.
  8. رحیمی، ج.، بذرافشان، ج. و خلیلی، ع. (1392). مطالعه تطبیقی روش‌های برآورد بارش مؤثر در زراعت گندم دیم در اقلیم‌های مختلف ایران. پژوهش‌های جغرافیای طبیعی. 45 (3): 46-31.
  9. سالاریان، م.، نجفی، م. و فریدحسینی، ع. (1393). بررسی روند ماهانه بارش مؤثر برای کشت گندم دیم (مطالعه موردی: شهرستان اصفهان)، چهارمین کنفرانس بین‌المللی چالش‌های زیست‌محیطی و گاهشناسی درختی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.
  10. سرمدیان، ف. و طاعتی، ع. (1394). پیمایش زراعی اکولوژیک بخشی از اراضی قزوین برای کشت گندم با استفاده از GIS و RS. بوم‌شناسی کشاورزی. 7 (3): 380-368.
  11. عباسی، ف.، محمدی، ح.، بازگیر، س. و آزادی، م. (1397). برآورد تاریخ بهینه کشت و مراحل حساس رشد به تنش آبی در مناطق عمده کشت گندم دیم ایران. مدیریت آب و آبیاری. 8 (2): 287-267.
  12. عینی، ح.، صادقی، س. و حسین‌زاده، س. (1391). پهنه‌بندی پتانسیل‌های توپوکلیمایی کشت گندم دیم در استان کرمانشاه. جغرافیا و توسعه ناحیه­ای. 10 (19): 45-21.
  13. کمالی، غ.، ملائی، پ. و بهیار، م. (1389). تهیه اطلس گندم دیم استان زنجان با استفاده از داده‌های اقلیمی و GIS. آب و خاک. 24(5): 907-894.
  14. کولائیان، ع. و سفید کوهی، م. ع. (1391). معرفی بهترین روش تعیین روش تعیین باران مؤثر کشت برنج در شهرستان قائمشهر. سومین همایش مدیریت جامع منابع آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.
  15. لاریجانی، ش.، سالاریان، م.، علیزاده، ا. و سهرابی، ت. (1396). صحت‌سنجی روابط تعیین بارش مؤثر در مناطق پرباران و کم‌باران ایران (مطالعه موردی: رشت و داران). اکوهیدرولوژی. 4 (3): 825-836.‎
  16. لشکری، ح.، کیخسروی، ق. و رضایی، ع. (1387). تحلیل کارایی مدل CROPWAT در برآورد نیاز آبی محصول گندم در غرب کرمانشاه: شهرستان‏های اسلام‌آباد غرب، سر پل ذهاب و روانسر. مدرس علوم انسانی. 13 (1): 270-248.
  17. مجرد، ف.، قمرنیا، ه. و نصیری، ش. (1384). برآورد بارش مؤثر و نیاز آبی برای کشت برنج در جلگه مازندران. پژوهش‌های جغرافیایی. 54: 76-59.

 

18. مولوی، ح.، لیاقت، ع. و نظری، ب. (1395). ارزیابی سیاست‌های اصلاح الگوی کشت و مدیریت کم‌آبیاری با استفاده از مدل‌سازی پویایی سیستم (مطالعة موردی: حوضة آبریز ارس). مدیریت آب و آبیاری. 6 (2): 236-217.

19. Adnan, Sh. & Hayat Khan, A. (2009). Effective rainfall for irrigated agriculture plains of Pakistan. Pakistan Journal of Meteorology, 6(11): 61-72.

20. Ahmadauli, KH. (2013). Development of virtual water transfer model for correction of cropping pattern and optimal use of agricultural water in the country. University of Tehran. Ph. D. dissertation

21. Ali, M. H. & Mubarak, S. (2017). Effective rainfall calculation methods for field crops: An Overview, Analysis and New Formulation. Asian Research Journal of Agriculture, 7(1): 1-12.

22. Ayu, I. W., Sebayang, H. T. & Soemarno, P. S. (2018). Assessment of Rice Water Requirement by Using CROPWAT Model in Sumbawa Regency, West Nusa Tenggara, Indonesia. VEGETOS 31: 2. doi: 10.4172/2229-4473.1000409 Volume 31 Issue 2 1000409 Page 2 of 6. Source: Primary Data (2017). Parameter Value Texture Total moisture available Maximum infiltration rate Maximum depth of roots Availability of initial moisture Medium. 140, 3.

23. Bannayan, M. & Eyshi Rezaei, E. (2014). Future production of Rainfed wheat in Iran (Khorasan province): climate change scenario analysis. Mitigation and Adaptation Strategies for Global Change, 19(2): 211-227.

24. Chahoon, J., Yonts, D. & Melvin, S. (2001). Estimating Effective Rainfall. Nebraska Extension Publications. 15 pp.

25. Cosgrove, W. J. and Rijsberman, F. R. (2014). World water vision: making water everybody's business. Earthscan Publications Ltd, London. 142 p.

26. Ewaid, S. H., Abed, S. A. & Al-Ansari, N. (2019). Crop Water Requirements and Irrigation Schedules for Some Major Crops in Southern Iraq. Water, 11(4), 756.

27. Farajzadeh, M. (2002). Modelling wheat yield criteria agro in Wes Azerbaijan province. Tehran University. MA dissertation.

28. Han, N., Lou, G., Wang, Y., Zhou, Q., Jin, J., Li, S. & Ye, L. (2016). Calculation of Effective Rainfall in the Spring Maize Growing Period. International Conference on Computer and Computing Technologies in Agriculture. Springer, Cham.

29. Kamali, Gh., Melani, P. & Behiar, M. (2010). Preparation of Dry Wheat Atlas of Zanjan Province Using Climatic and GIS Data. Water and Soil Journal, 24 (5): 894-907.

30. Karandish, F., Mousavi, S. S. & Tabari, H. (2017). Climate change impact on precipitation and cardinal temperatures in different climatic zones in Iran: analyzing the probable effects on cereal water-use efficiency. Stochastic Environmental Research and Risk Assessment, 31(8): 2121-2146.

31. Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T. ... & Reynolds, M. (2008). Climate change: can wheat beat the heat?. Agriculture, Ecosystems & Environment, 126(1-2): 46-58.

32. Raes, D., Steduto, P., Hsiao, T. & Fereres, E. (2016). Refrence Manual Aquacrop Version 5.0 Food and Agriculture Organization of the United Nations, Rome, Italy.

33. Rahman, M. M., Islam, M. O. & Hasanuzzaman, M. (2008). Study of effective rainfall for irrigated agriculture in south-eastern part of Bangladesh. World Journal of Agricultural Sciences, 4(4): 453-457.

34. Tavakoli, A. R., Moghadam M. M. & Sepaskhah, A. R. (2015). Evaluation of the AquaCrop model for barley production under deficit irrigation and rainfed condition in Iran. Agricultural Water Management,161: 136-146.

35. Vaghefi, S. A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., Yang, H. & Abbaspour, K. C. (2019). The future of extreme climate in Iran. Scientific Reports, 9(1): 1464.

36. Verma, R., Gangwar, A., Kumar, M. & Verma, R. K. (2019). Study on Water Requirement of Rice Using CROPWAT Model for Lucknow Division of Uttar Pradesh. Journal of AgriSearch, 6(1), 44-49.