Overtopping risk management by system dynamics and Monte-Carlo simulations, Hajilarchay Dam of Iran

Document Type : Research Paper


1 PhD Student in Civil Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

2 Professor, Faculty of Civil Engineering and Institute of Environment, Excellency Center for Hydroinformatics, University of Tabriz, Tabriz, Iran


Dams are effective in controlling the flood and reducing its damage. But, during the flood, the overtopping and the flow of water from the dam is always threatening it. Therefore, in order to maintain the dam safety against flood and also to maintain the efficiency of the dam, it should be balanced between the water level in reservoir of dam and its overtopping risk. Using the system dynamics, a set of complex, relevant, and effective overtopping factors could be simulated to examine the impact of different scenarios. The current research investigated the effect of different parameters on the overtopping risk on Hajilarchay dam (Northwestern Iran) using the system dynamics and Monte Carlo simulations, and estimated the human losses caused by the dam failure using of 441 and 118 persons for two cases of without warning and adequate warning, respectively. The overtopping risk of 〖2.27×10〗^(-6) was calculated in accordance with the USACE method. Given this risk value, a reliable level for reservoir water is set to 1040.70 meters above sea level, and the agriculture area at the downstream is set 1660 hectares for development. The results also show that the overtopping risk will increase by increasing the life of the dam, especially after 20 years, due to accumulation of sediment and settlement of the dam, and considering too much increase in overtopping risk caused by the change of dam’s spillway in order to save the cost of its construction, then adaptation strategies are provided including reservoir water level control.


1. ابراهیم‌زاده ع.، ضرغامی م. و نورانی و. (۱۳۹۸). ارزیابی ریسک روگذری سد‌های خاکی با مدل پویایی سیستم‌ها تحت شبیه‌سازی مونت‌کارلو و روش ابر‌مکعب لاتین، مطالعه موردی: سد حاجیلر‌چای. تحقیقات منابع آب ایران. ۱۵(۱): ۱۴-۳۱.
2. فتوکیان م.، صفاری ن. و ضرغامی م. (۱۳۹۶). مدل‌سازی پویای سیستم سد مخزنی یامچی با اعمال الگوی بهینه کشت جهت تدوین سیاست بهره‌برداری. تحقیقات منابع آب ایران. ۱۳(۳): ۱-۱۶.
3. کاراندیش ف.، ابراهیمی ک. و برهمت ج. (۱۳۹۲). بررسی شدت سیل‌خیزی زیر‌خوضه‌های کارون و عوامل مؤثر بر آن در شبیه‌سازی مدیریت یکپارچه و نیمه‌توزیعی سیلاب. مدیریت آب و آبیاری. ۳(۲): ۱-۱۲.
4. محمودیان شوشتری م.، ملک‌محمدی ب. و بنی‌هاشمی م. (۱۳۹۵). ارزیابی ریسک ایمنی سدها (مطالعه موردی: ریسک سیلاب در سد گلستان). مهندسی عمران امیرکبیر. ۴۸(۴): ۳۹۵-۴۰۶.
5. ملا‌حسینی م.، موسوی س. و صلوی‌تبار ع. (۱۳۹۱). ارزیابی اثر ایجاد ظرفیت ذخیره در کاهش خسارت سیلاب با استفاده از مدل بهینه‌سازی- شبیه‌سازی مبتنی بر پویایی سیستم. نهمین کنگره بین‌المللی مهندسی عمران. دانشگاه صنعتی اصفهان. اصفهان. ایران.
6. مولوی ح.، لیاقت ع. و نظری ب. (۱۳۹۵). ارزیابی سیاست‌های اصلاح الگوی کشت و مدیریت کم‌آبیاری با استفاده از مدل‌سازی پویایی سیستم‌ (مطالعه موردی: حوضه آبریز ارس). مدیریت آب و آبیاری. ۶(۲): ۲۱۷-۲۳۶.
7. مهرآذر آ.، مساح بوانی ع.، مشعل م. و رحیمی‌خوب ح. (۱۳۹۵). مدل‌سازی یکپارچه سیستم‌های منابع آب، کشاورزی و اقتصادی- اجتماعی دشت هشتگرد با رویکرد دینامیکی سیستم‌ها. مدیریت آب و آبیاری. ۶(۲): ۲۶۳-۲۷۹.
8. مهندسین مشاور بندآب. (۱۳۹۲). گزارش طرح سد مخزنی حاجیلر چای. جلدهای اول تا نهم، شرکت سهامی آب منطقه‌ای آذربایجان شرقی.
9. Chang, D. S. & Zhang, L. M. (2010). Simulation of the Erosion Process of Landslide Dams Due to Overtopping Considering Variations in Soil Erodibility along Depth. Journal of Natural Hazards and Earth System Sciences, 10(4), 933-946.
10. Chongxun, M., Fanggui, L., Mei, Y. &Guikai, S. (2008). Risk analysis for earth dam overtopping. Journal of Water Science and Engineering, 1(2), 76-87.
11. Ghashghaie, M., Marofi, S. & Marofi, H. (2014). Using system dynamics method to determine the effect of water demand priorities on downstream flow. Water Resource Management, 28, 5055-5072
12. Goodarzi, E., Shui, L. T. & Ziaei, M. (2014). Risk and Uncertainty Analysis for Dam Overtopping-Case Study: the Doroudzan Dam, Iran. Journal of Hydro-Environment Research, 8(1), 50-61.
14. Hughes, S. A. (2004). Estimation of Wave Run-up on Smooth, Impermeable Slopes Using the Wave Momentum Flux Parameter. Journal of Coastal Engineering, 51(11), 1085-1104.
15. Juan, C., Ping, A. Z., Ru, A., Feilin, Z. & Bin, X. (2019). Risk analysis for real-time flood control operation of multi-reservoir systems using a dynamic Bayesian network. Environmental Modeling & Software, 111, 409-420.
16. Kotir, J.H., Smith, C., Brown, G., Marshall, N. &Johnstone, R. (2016). A system dynamics simulation model for sustainable water resources management and agriculture development in the Volta river basin, Ghana. Science of the Total Environment, 573, 444-457.
17. Kuo, J. T., Yen, B. C., Hsu, Y. C.,  & Lin, H. F. (2007). Risk Analysis for Dam Overtopping Feitsui Reservoir as a Case Study. Journal of Hydraulic Engineering, 133(8), 955-963.
18. Kwon, H. & Moon, Y. (2005). Improvement of Overtopping Risk Evaluations Using Probabilistic Concepts for Existing Dams. Journal of Stochastic Environmental Research and Risk Assessment, 20(4), 223-237.
19. Mays, L.W. (2000) The Role of Risk Analysis in Water Resources Engineering. Journal of Contemporary Water Research and Education, 103(1), 8-12.
20. Motevalli, M., Zadbar, A., Elyasi, E. & Jalaal, M. (2015). Using Monte-Carlo approach for analysis of quantitative and qualitative operation of reservoirs system with regard to the inflow uncertainty. Journal of African Earth Sciences, 105, 1-16.
21. Pan, L., Kairong, L. & Xiaojing, W. (2014). A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts. Stochastic Environmental Research and Risk Assessment, 29(3), 803-813.
22. Qianli, D. (2016). Evaluating risks of dam-reservoir systems using efficient importance sampling. Phd. Thesis, university of Maryland.
23. Sharafati, A. & Azamathulla, H.M. (2018). Assessment of Dam Overtopping Reliability using Overtopping Threshold Curve. Water Resources Management, 32(7), 2369-2383.
24. Sherong, Z. & Yaosheng, T. (2014). Risk assessment of earth dam overtopping and its application research. Natural Hazards, 74 (2), 717-736.
25. Simonovic, S. P. (2009). Managing water resources, methods and tools for a system approach. UNESCO Publishing, United Kingdom, 637pp.
26. Simonovic, S. P. & Ahmad, S. (2000). System Dynamics Modeling of Reservoir Operations for Flood Management. Journal of Computing in Civil Engineering, 14(3), 190-198.
27. Sterman, J. D. (2000). Business Dynamics System Thinking and Modeling for Complex World. Irwin, McGraw-Hill, MA, 982pp.
28. USACE. (2014). U.S. Army Corps of Engineers, Safety of Dams – Policy and Procedures, ER-1110-2-1156, March 31, 2014. 
29. USBR. (1992). US Department of the Interior, Bureau of Reclamation, Freeboard Criteria and Guidelines for Computing Freeboard Allowances for Storage Dams, ACER Technical Memorandum No. 2, Denver, Colorado.
30. USBR. (1999). U.S. Department of the Interior, Bureau of Reclamation, A Procedure for Estimating Loss of Life Caused by Dam Failure, DSO-99-06, September 30, 1999.
31. Wang, Z. & Bowles, D. S. (2005). Dam Breach Simulations with Multiple Breach Locations under Wind and Wave Actions. Journal of Advances in Water Resources, 29, 1222-1237.
32. Yang, J., Lei, K., Khu, S. & Meng, W. (2015). Assessment of water resources carrying capacity for sustainable development based on a system dynamics model, Water Resource Management, 29, 885-899.
33. Yuefeng, S., Haotian, C., Zhengjian, M. & Denghua, Z. (2012). Solution method of overtopping risk model for earth dams. Safety Science, 50, 1906-1912.
34. Zarghami, M. & Amir Rahmani, M., (2015). Toward effective water diplomacy by using system dynamics: Case study, The 33rd International Conference of the System Dynamics Society, Cambridge, Massachusetts, USA.
35. Zhangjun, L., Xinfa, X., Jingqing, C., Tianfu, W. & Jiao, N. (2018). Hydrological risk analysis of dam overtopping using bivariate statistical approach: a case study from Geheyan Reservoir, China. Stochastic Environment Research and Risk Assessment, 32 (9), 2515-2525.