Evaluation of CEEMD- GPR hybrid model in temporal and spatial daily stream flow forecasting

Document Type : Research Paper

Authors

1 M.S.c Student. Water Resources Management, Department of water engineering, Faculty of civil Engineering, Tabriz university, Tabriz, Iran

2 Professor, Department of Water Engineering, Faculty of civil engineering, Tabriz university, Tabriz, Iran

Abstract

Accurate prediction of river daily discharge is a suitable tool for water resources planning and management. In this paper, cross station discharge of the Arkansas River in U.S.A, were examined using Gaussian Process Regression (GPR), Extreme Learning Machine (ELM) and complete ensemble empirical mode decomposition combined models. For this Purpose, in the first step, the daily and monthly discharge was predicted via GPR and ELM models. Then, the discharge time series were broken up by CEEMD method into cages, and these subclasses were introduced into the Gaussian process regression end ELM modeling to simulate discharge. Furthermore, direct correlation (DC), Root Mean Square Error (RMSE), correlation coefficient (R) and Mean Absolute Percentage Error (MAPE) were used to evaluate the efficiency of the models. The results showed that the CEEMD approach improved the performance of the above mentioned models dramatically. For instance, the values of MAPE correspond to GPR hybrid model in forecasting discharge in the first, second and third station with CEEMD pre-processing were reduced by 34, 27and 32 percent, respectively, as compared to those in the GPR model without pre-processing. Also, the effect of each of the sub-series of ensemble empirical mode decomposition model (Residual and IMFs) was studied to improve predictive outcomes. It was observed that the most inefficient subseries in the complete ensemble empirical mode decomposition model is the residual subseries. The CEEMD- ELM model can be used in watershed management and flood control in Iran.

Keywords


1. رجائی، ط.، و ابراهیمی، ه. (1393). مدلسازی نوسان­های ماهانه آب زیرزمینی به‌وسیله تبدیل موجک و شبکه عصبی پویا. مدیریت آب و آبیاری. 4(1): 87- 73.
2. روشنگر، ک.، چمنی،م. (1398). پیش بینی و ارزیابی ارتباط دبی رودخانه در ایستگاه‌های هیدرومتریک متوالی با استفاده از روش­های ترکیبی (GPR-EEMD) مطالعه موردی: رودخانه هوستونیک. تحقیقات آب و خاک ایران.
3. شفائی، م.، فاخری­فرد، ا.، دربندی، ص.، قربانی، م. (1392). پیش‌بینی جریان روزانه رودخانه با استفاده از مدل هیبرید موجک و شبکه عصبی؛ مطالعه موردی ایستگاه هیدرومتری ونیار در حوضه آبریز آجی چای. مهندسی آبیاری و آب ایران. 2(14): 113- 128.
4. مساعدی، ا.، نبی­زاده، م.، و دهقانی، ا.(1391). تخمین هوشمند دبی روزانه با بهره­گیری از سامانه استنباط فازی- عصبی تطبیقی. مدیریت آب و آبیاری. 2(1): 80- 69.
5. نورانی، و. (1394). مبانی هیدروانفورماتیک، انتشارات دانشگاه تبریز، تبریز، 625 صفحه.
6. Amirat, Y., Benbouzidb, M.E.H., Wang, T., Bacha, K. & Feld, G. (2018). Ensemble Empirical Mod Decomposition-based notch filter for induction   machine bearing faults detection. Applied Acoustics, 133, 202–209.
7. Bai, Y., Wang, P., Xie, J. J., Li, J. T. & Li, C. (2015). An additive model for monthly reservoir inflow forecast. Hydrologic Engineering, 20 (7), 1943-1955.
8. Choy, K. Y. & Chan, C. W. (2003). Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. International Journal of Systems Science, 34(14-15), 763-773.
9. Danandeh Mehr, A., Nourani, V., Hrnjica, B. & Molajou, A. (2017). A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events. Hydrology, 555, 397-406.
10. Ding, S., Guo, L. & Hou, Y. (2017). Extreme learning machine with kernel model based on deep learning. Neural Computing and Applications, 28(8), 1975-84.
11. Guo, J., Zhou, J., Qin, H., Zou, Q. & Li, Q. (2011). Monthly stream flow forecasting based on improved support vector machine model. Expert Systems with Applications, 38 (10), 13073-13081.
12. Hosseini, S.M. & Mahjouri, N. (2016). Integrating Support Vector Regression and a Geomorphologic Artificial Neural Network for Daily Rainfall-Stream flow Modeling. Hydrology, 38, 329-345.
13. Huang, G-B. & Siew, C-K. (2005). Extreme learning machine with randomly assigned RBF kernels. International Information Technology, 11(1), 16-24.
14. Huang, Y., Schmitt, F.G., Lu, Z. & Liu, Y. (2009). Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. Hydrology, 373(1-2), 103-111.
15. Huang, S.Z., Huang, Q., Wang, Y.M. & Chen, Y.T. (2014). Stream flow series variation diagnosis based on heuristic segmentation and approximate entropy method. Acta Scientiarum Naturalium Universitatis Sunyatseni, 53 (4), 154-160.
16. Kwin, C.T., Talei, A., Alaghmand, S. & Chua, L.H.C. (2016). Rainfall-Stream flow Modeling using Dynamic Evolving Neural Fuzzy Inference System with Online Learning. Procedia Engineering, 154, 1103-1109.
17. Lima, A.R., Cannon, A.J. & Hsieh, W.W. (2016). Forecasting Daily Stream flow using Online Sequential Extreme Learning Machines. Hydrology, 537, 431-443.
18. Nayak, P.C., Sudheer, K.P., Rangan, D.M. & Ramasastri, K.S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Hydrology, 291(1-2), 52-66.
19. Neal, R.M. (1997). Monte carlo implementation of Gaussian process models for Bayesian regression and classification, University of Toronto, Toronto: Department of Statistics and Department of Computer Science, Technical Report, no. 9702.
20. Roushangar, K. & Alizadeh, F. (2018). Entropy-based analysis and regionalization of annual precipitation variation in Iran during 1960–2010 using ensemble empirical mode decomposition. Hydroinformatics, 20 (2), 468-485.
21. Sang, Y.F., Wang, Z. & Liu, C. (2012). Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis. Hydrology, 424-425, 154-164.
22. Taormina, R. & Chau, K.W. (2015). Data-driven Input Variable Selection for Rainfall–Stream flow Modeling using Binary-Coded Particle Swarm Optimization and Extreme Learning Machines. Hydrology, 529, 1617-1632.
23. Wu, Z. & Huang, N.E. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proc RS Lond 460A, 1597-1611.
24. Yaseen, Z.M., Jaafar, O., Deo, R.C., Kisi, O., Adamowski, J., Quilty, J. & El-shafie, A. (2016). Boost Stream-Flow Forecasting Model with Extreme Learning Machine Data-Driven: A Case Study in a Semi-Arid Region in Iraq. Hydrology, 542, 603-614.
25. Yaslan, Y. & Bican, B. (2017). Empirical mode decomposition based de noising method with support vector regression for time series prediction: a case study for electricity load forecasting. Measurement, 103, 52-61.
26. Yu, X., Liong, S.Y. & Babovic, V. (2004). EC-SVM approach for real-time hydrologic forecasting. Hydroinformatics, 6(3), 209-223.
27. Zhu, S., Luo, X., Xu, Z. & Ye, L. (2018). Seasonal stream flow forecasts using mixture-kernel GPR and advanced methods of input variable selection. Hydrology Research, 50(1), 200-214.