1. رجائی، ط.، و ابراهیمی، ه. (1393). مدلسازی نوسانهای ماهانه آب زیرزمینی بهوسیله تبدیل موجک و شبکه عصبی پویا. مدیریت آب و آبیاری. 4(1): 87- 73.
2. روشنگر، ک.، چمنی،م. (1398). پیش بینی و ارزیابی ارتباط دبی رودخانه در ایستگاههای هیدرومتریک متوالی با استفاده از روشهای ترکیبی (GPR-EEMD) مطالعه موردی: رودخانه هوستونیک. تحقیقات آب و خاک ایران.
3. شفائی، م.، فاخریفرد، ا.، دربندی، ص.، قربانی، م. (1392). پیشبینی جریان روزانه رودخانه با استفاده از مدل هیبرید موجک و شبکه عصبی؛ مطالعه موردی ایستگاه هیدرومتری ونیار در حوضه آبریز آجی چای. مهندسی آبیاری و آب ایران. 2(14): 113- 128.
4. مساعدی، ا.، نبیزاده، م.، و دهقانی، ا.(1391). تخمین هوشمند دبی روزانه با بهرهگیری از سامانه استنباط فازی- عصبی تطبیقی. مدیریت آب و آبیاری. 2(1): 80- 69.
5. نورانی، و. (1394). مبانی هیدروانفورماتیک، انتشارات دانشگاه تبریز، تبریز، 625 صفحه.
6. Amirat, Y., Benbouzidb, M.E.H., Wang, T., Bacha, K. & Feld, G. (2018). Ensemble Empirical Mod Decomposition-based notch filter for induction machine bearing faults detection. Applied Acoustics, 133, 202–209.
7. Bai, Y., Wang, P., Xie, J. J., Li, J. T. & Li, C. (2015). An additive model for monthly reservoir inflow forecast. Hydrologic Engineering, 20 (7), 1943-1955.
8. Choy, K. Y. & Chan, C. W. (2003). Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. International Journal of Systems Science, 34(14-15), 763-773.
9. Danandeh Mehr, A., Nourani, V., Hrnjica, B. & Molajou, A. (2017). A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events. Hydrology, 555, 397-406.
10. Ding, S., Guo, L. & Hou, Y. (2017). Extreme learning machine with kernel model based on deep learning. Neural Computing and Applications, 28(8), 1975-84.
11. Guo, J., Zhou, J., Qin, H., Zou, Q. & Li, Q. (2011). Monthly stream flow forecasting based on improved support vector machine model. Expert Systems with Applications, 38 (10), 13073-13081.
12. Hosseini, S.M. & Mahjouri, N. (2016). Integrating Support Vector Regression and a Geomorphologic Artificial Neural Network for Daily Rainfall-Stream flow Modeling. Hydrology, 38, 329-345.
13. Huang, G-B. & Siew, C-K. (2005). Extreme learning machine with randomly assigned RBF kernels. International Information Technology, 11(1), 16-24.
14. Huang, Y., Schmitt, F.G., Lu, Z. & Liu, Y. (2009). Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. Hydrology, 373(1-2), 103-111.
15. Huang, S.Z., Huang, Q., Wang, Y.M. & Chen, Y.T. (2014). Stream flow series variation diagnosis based on heuristic segmentation and approximate entropy method. Acta Scientiarum Naturalium Universitatis Sunyatseni, 53 (4), 154-160.
16. Kwin, C.T., Talei, A., Alaghmand, S. & Chua, L.H.C. (2016). Rainfall-Stream flow Modeling using Dynamic Evolving Neural Fuzzy Inference System with Online Learning. Procedia Engineering, 154, 1103-1109.
17. Lima, A.R., Cannon, A.J. & Hsieh, W.W. (2016). Forecasting Daily Stream flow using Online Sequential Extreme Learning Machines. Hydrology, 537, 431-443.
18. Nayak, P.C., Sudheer, K.P., Rangan, D.M. & Ramasastri, K.S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Hydrology, 291(1-2), 52-66.
19. Neal, R.M. (1997). Monte carlo implementation of Gaussian process models for Bayesian regression and classification, University of Toronto, Toronto: Department of Statistics and Department of Computer Science, Technical Report, no. 9702.
20. Roushangar, K. & Alizadeh, F. (2018). Entropy-based analysis and regionalization of annual precipitation variation in Iran during 1960–2010 using ensemble empirical mode decomposition. Hydroinformatics, 20 (2), 468-485.
21. Sang, Y.F., Wang, Z. & Liu, C. (2012). Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis. Hydrology, 424-425, 154-164.
22. Taormina, R. & Chau, K.W. (2015). Data-driven Input Variable Selection for Rainfall–Stream flow Modeling using Binary-Coded Particle Swarm Optimization and Extreme Learning Machines. Hydrology, 529, 1617-1632.
23. Wu, Z. & Huang, N.E. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proc RS Lond 460A, 1597-1611.
24. Yaseen, Z.M., Jaafar, O., Deo, R.C., Kisi, O., Adamowski, J., Quilty, J. & El-shafie, A. (2016). Boost Stream-Flow Forecasting Model with Extreme Learning Machine Data-Driven: A Case Study in a Semi-Arid Region in Iraq. Hydrology, 542, 603-614.
25. Yaslan, Y. & Bican, B. (2017). Empirical mode decomposition based de noising method with support vector regression for time series prediction: a case study for electricity load forecasting. Measurement, 103, 52-61.
26. Yu, X., Liong, S.Y. & Babovic, V. (2004). EC-SVM approach for real-time hydrologic forecasting. Hydroinformatics, 6(3), 209-223.
27. Zhu, S., Luo, X., Xu, Z. & Ye, L. (2018). Seasonal stream flow forecasts using mixture-kernel GPR and advanced methods of input variable selection. Hydrology Research, 50(1), 200-214.