Distribution of heavy metals Pb, Cu and Ni in irrigated fields by wastewater of Tehran city, Iran, using Sentinel2 image

Document Type : Research Paper

Authors

1 Department of Irrigation Engineering, Agriculture and Natural Resources Paradise, University of Tehran

2 Irrigation and drainage engineering Dept.College of Agricultural and Natural resources.University of Tehran.Karaj.Iran.

3 Irrigation and drainage engineering Dept.College of agricultural and natural resources.University of Tehran.Karaj.Iran

Abstract

Abstract
Heavy metals pollution is one of the main drawbacks of using wastewater for irrigation. Exploring the pollution of heavy metals in a big area needs frequent experimental measurements, which is mostly time and money consuming. In such a condition, using satellite images and making a relationship between images and heavy metal’s concentration can be a solution for estimating the polluted area. In this study, the image of Sentinell2 satellite was used to evaluate the heavy metals pollution of wastewater irrigated area in south of Tehran. For this aim, 30 soil-surface samples were collected in the area that is irrigated by raw wastewater. After preparing the samples, the concentration of Pb, Cu and Ni was determined using atomic absorption spectroscopy. Then the relation between the heavy metals concentration and reflectance in the bands or the ration of the bands at the corresponded sampling points was determined by applying the stepwise regression method. The developed models were applied on the satellite image for zoning the heavy metals concentrations in the study area. Finally, the accuracy of the developed models was examined by Root-Mean-Square Error (RMSE) and Pearson correlation coefficients. The results showed that the amounts of RMSE for the equations of Pb, Cu and Ni were 1.90, 2.54 and 1.59 respectively while the amounts of R were 0.81, 0.75 and 0.73 for these metals that showed a promising match between predicted and measured results of the models.
Keywords: Band, Metals concentration, Reflectance, Stepwise method, Satellite image, Zoning

Keywords


  1. ترابیان ع. بغوری ا. (1373) بررسی آلودگی‌های ناشی از کاربرد پساب‌های شهری و صنعتی در اراضی کشاورزی جنوب تهران. محیط‌شناسی، 18: 33-46.
  2. دیانی م. نادری م. محمدی ج. (1388) پهنه­بندی غلظت سرب، روی و کادمیم در خاک با استفاده از داده‌های ماهواره Landsat ETM+  در جنوب شهرستان اصفهان. آب و خاک، 24: 286–296.
  3. سمیعی­فرد ر. کشاورز ع. اعتصامی ح. رستمی­نیا م. رحمانی ا. (1395) پایش تجمع فلزات سنگین آرسنیک، کادمیوم، نیکل و سرب در خاک با استفاده از تصاویر ماهواره لندست 8. پنجمین همایش سراسری کشاورزی و منابع طبیعی پایدار، 1–8.
  4. هراتی م. رستگار م. حریری ن. وروای­پور م. (1389) اثرات استفاده از پساب‌های شهری و مشکلات تجمع فلزات سنگین در اراضی کشاورزی (منطقه جنوب شهر تهران). اولین کنگره چالش کود در ایران نیم قرن مصرف کود.
  5. Carr G. Potter R.B. and Nortcliff S. (2011) Water reuse for irrigation in Jordan: Perceptions of water quality among farmers. Agriculture Water Management, 98: 847-854.
  6. Choe E. van der Meer F. van Ruitenbeek F. van der Werff H. de Smeth B. Kim K.-W. (2008) Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sensing of Environment. 112: 3222-3233.
  7. Gannouni S. (2012) A Spectroscopic Approach to Assess Heavy Metals Contents of the Mine Waste of Jalta and Bougrine in the North of Tunisia. Geographic Information System. 4: 242-253.
  8. Islam E.U. Yang X. He Z. Mahmood Q. (2007) Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. Zhejiang University-SCIENCE B. 8: 1-13.
  9. Kemper T. Sommer S. (2003) Mapping and monitoring of residual heavy metal contamination and acidification risk after the Aznalcóllar mining accident (Andalusia Spain) using field and airborne hyperspectral data. Proceedings 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching, Germany: European Association of Remote Sensing Laboratories .
  10. Kemper T. Sommer S. (2002) Estimate of Heavy Metal Contamination in Soils after a Mining Accident Using Reflectance Spectroscopy. Environmental Science & Technology. 36: 2742-2747.
  11. Kooistra L. Wehrens R. Leuven R.S.E.. Buydens L.M.. (2001) Possibilities of visible–near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Analytica Chimica Acta, 446: 97-105.
  12. Lillesand T.M. Kiefer R.W. Chipman J.W. (2009) Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environmental Pollution, 157: 834-839.
  13. Liu W.H. Zhao J.Z. Ouyang Z.Y. Söderlund L. Liu G.H. (2005) Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing China. Environment International, 31: 805-812.
  14. Liu Y. Li W. Wu G. Xu X. (2011) Feasibility of estimating heavy metal contaminations in floodplain soils using laboratory-based hyperspectral data_A case study along Le’an River China. Geo-spatial Information Science, 14: 10-16.
  15. Chiroma T.. Ebewele R.O. Hymore F. (2014) Comparative Assessement Of Heavy Metal Levels In Soil Vegetables And Urban Grey Waste Water Used For Irrigation In Yola And Kano. International Refereed Journal of Engineering and Science, 3: 2319-183.
  16. Rathod P.H. Rossiter D.G. Noomen M.F. van der Meer F.D. (2013) Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils. International Journal of Phytoremediation, 15: 405-26.
  17. Rattan R.K. Datta S.P. Chhonkar P.K. Suribabu K. Singh A.K. (2005) Long-term impact of irrigation with sewage effluents on heavy metal content in soils crops and groundwater_a case study. Agriculture, Ecosystems & Environment, 109: 310-322.
  18. Singh K.P. Mohan D. Sinha S. Dalwani R. (2004) Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health agricultural and environmental quality in the wastewater disposal area. Chemosphere, 55: 227-255.
  19. Sposito G. (1982) Trace Metal chemistry in aird-zone field soils amended sewage sludge: I. Fractionation of Ni Cu Zn Cd Pb in solid phases. Soil Science Society of America Journal, 46: 260-264.
  20. Srinivasan J.T. Reddy V.R. (2009) Impact of irrigation water quality on human health: A case study in India. Ecological Economics, 68: 2800–2807.
  21. Wu Y. Chen J. Wu X. Tian Q. Ji J. Qin Z. (2005) Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils. Applied Geochemistry, 20: 1051-1059.
  22. Wuana R. a. and Okieimen F.E. (2011) Heavy Metals in Contaminated Soils: A Review of Sources Chemistry Risks and Best Available Strategies for Remediation. Ecology, 2011: 1-20.
  23. Wackernagel. H. (2002) Multivariate geostatistics: an introduction with applications. 3rd edition, Springer.
  24. Ferrier G. )1999( Application of imaging spectrometer data in identifying environmental pollution caused by mining at Rodaquilar, Spain. Remote Sensing of Environment. 68: 125-137.
  25. Jacquemond S. Ustin S.L. Andreoli G. )1996( Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sensing of Environmental. 56: 194-202.
  26. Wang J. Cui L. Gao W. Shi T. Chen Y. Gao Y. (2014). Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy. Geoderma. 216: 1-9.
  27. Yang K. Zhou N. Steimann P. )2008( Landfills in Jiangsu province, China, and potential threats for public health: Leachate appraisal and spatial analysis using geographic information system and remote sensing. Waste Management. 127: 768-776.