ارزیابی و تحلیل حساسیت مدل AquaCrop در شبیه‌سازی عملکرد چغندرقند تحت تنش‌های آبی در شهرکرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، موسسه تحقیقات خاک و آب، تخصص: تبخیر/ تعرق/ مدیریت آبیاری مزرعه/ مدل‌سازی گیاهان در شرایط آبیاری استاندارد و کم آبیاری

2 استادیار، گروه علوم و مهندسی آب، واخد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.

چکیده

این پژوهش به منظور ارزیابی دقت مدل AquaCrop برای تعیین عملکرد و کارایی مصرف آب چغندرقند انجام گرفت. در این پژوهش از داده‌های دو فصل زراعی کشت چغندرقند که در مرکز تحقیقات کشاورزی شهرکرد انجام شده بود، استفاده گردید. تیمارهای مورد استفاده در این پژوهش شامل کم‌آبیاری (در پنج سطح؛ E0: 100 درصد، E1: 85 درصد؛ E2: 70 درصد؛ E3: 55 درصد و E4: 30 درصد) در دوره‌های مختلف رشد (T1: ابتدای دوره رشد؛ T2: دوره میانی و T3: انتهای دوره رشد) بود. نتایج تحلیل حساسیت نشان داد که این مدل به پارامترهای رطوبت در نقطه پژمردگی و دمای حداقل حساسیت کم و به تغییرات ضریب گیاهی برای تعرق حساسیت بالا داشت. نتایج آماره‌های جذر میانگین مربعات خطا و جذر میانگین مربعات نرمال شده برای عملکرد چغندر قند به ترتیب برابر با 57/0 و 11/0 تن در هکتار به دست آمد. نتایج آماره‌های کارایی مدل و شاخص توافق برای عملکرد چغندرقند به ترتیب برابر با 62/0 و 99/0 به دست آمدند. مقایسه آماری نتایج شبیه‌سازی شده توسط مدل AquaCrop و داده‌های مزرعه‌ای نشان داد که که این مدل دقت قابل قبولی در شبیه‌سازی هر دو عامل عملکرد و کارایی مصرف آب دارد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation and Sensitivity Analysis of AquaCrop to Simulate Sugar Beet Yield under Water Stress in Shahrekord

نویسندگان [English]

  • Niaz Ebrahimipak 1
  • Aslan egdernezhad 2
1 Associated professor, Department of irrigation and soil physics, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
2 Islamic Azad University
چکیده [English]

This research was conducted to evaluate AquaCrop model to simulate sugar beet yield and water use efficiency (WUE). In this research, data from two sugar beet cultivars were used at Shahrekord Agricultural Research Center. Treatments were consisted of water deficit (in five levels: E0: 100%, E1: 85%, E2: 70%, E3: 55%, and E4: 30%) in different growth stages (T1: initial, T2: T2: mid-season, and T3: late season). AquaCrop had a low sensitivity to change in PWP moisture and minimum temperature values and high sensitivity to change in crop coefficient for transpiration values. The yield results of RMSE and NRMSE were 0.57 and 0.11 ton.ha-1, respectively. The yield results for two statistics criteria (EF and d) were 0.62 and 0.99, respectively. Evaluation of AquaCrop revealed that this model had good accuracy for simulation of sugar beet yield and WUE.

کلیدواژه‌ها [English]

  • Crop Yield
  • Water deficit
  • Water use efficiency
  • Plant Modeling
  • Water management
  1. ابراهیمی‌پاک ن.، پذیرا ا.، کاوه ف.، عابدی م. ج. و صباغ‌فرشی م. ج (1387) تأثیر کم‌آبیاری طی مراحل مختلف رشد چغندرقند بر عملکرد کمی و کیفی آن. پژوهش و سازندگی در زراعت و باغبانی. 78: 73-63.
  2. ضیایی غ.، بابازاده ح.، عباسی ح. و کاوه ف (1393) بررسی عملکرد مدل‌های AquaCrop و CERES-Maize در برآورد اجزای بیلان آب خاک و عملکرد ذرت. تحقیقات آب و خاک ایران. 45(4): 445-435.
  3. کاراندیش ف.، میرلطفی س. م.، شاهنظری ع.، عباسی ف. و قیصری م (1392) بررسی تأثیر آبیاری ناقص ریشه و کم‌آبیاری معمولی بر بهره‌روی آب و عملکرد و اجزای عملکرد گیاه ذرت. تحقیقات آب و خاک ایران. 44(1): 44-33.
  4. پاکروان م و مهرابی‌بشرآبادی ح (1389) تعیین ارزش اقتصادی و تابع تقاضای آب در تولید چغندرقند استان کرمان. پژوهش آب ایران. 4(6): 90-83.
  5. موسوی س. ن. ا.، قرقانی ف.، طاهری ف. و محمدی ح (1387) بررسی عوامل مؤثر بر عرضه چغندرقند در استان فارس. چغندرقند. 24(1): 119-107.
  6. محمدی م.، داوری ک.، قهرمان ب.، انصاری ح. و حق‌وردی ا (1394) واسنجی و صحت‌سنجی مدل AquaCrop برای شبیه‌سازی عملکرد گندم بهاره تحت تنش همزمان شوری و خشکی. پژوهش آب در کشاورزی. 29(3): 295-277.
  7. وطن‌خواه ا و ابراهیمیان ح (1395) ارزیابی مدل AquaCrop در شبیه‌سازی عملکرد ذرت علوفه‌ای در طول جویچه. تحقیقات آب و خاک ایران. 47(3): 504-495.
  8. علیزاده ح.، نظری ب.، پارسی‌نژاد م.، رمضانی‌اعتدالی ه. و جانباز ح (1389) ارزیابی مدل AquaCrop در مدیریت کم‌آبیاری گندم در منطقه کرج. آبیاری و زهکشی ایران. 4: 283-273.
  9. Alishiri R., Paknejad F. and Aghayari F (2014) Simulation of sugar beet growth under different water regimes and nitrogen levels by AquaCrop. Bioscience. 4(4): 1-9.
  10. Andarziana B., Bannayanb M., Stedutoc P., Mazraeha H., Barati M. E., Barati, M. A. and Rahnama A. (2011) Validation, and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management. 100:1-8.
  11. Blum F A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research. 112: 119-123.
  12. Boogaard H. L., Van Diepen C. A., Rotter R. P., Cabrera J. M. C. A. and Van Laar H H(1998) WOFOST 7.1; user's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5 (No. 52). SC-DLO.
  13. Farahani H. J., Izzi G., Steduto P. and Oweis T Y (2009) Parameterization and evaluation of AquaCrop for full and deficit irrigated cotton. Agronomy. 101: 469-476.
  14. Farre F and Faci J M(2009) Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment. Agricultural Water Management. 96: 384-394.
  15. Garcia-Vila M., Fereres E., Mateos L., Orgaz F and Steduto P (2009) Deficit irrigation optimization of cotton with AquaCrop. Agronomy. 101: 477-487.
  16. Geerts S., Raes D., Garcia M., Miranda R and Cusicanqui J A (2009) Simulating yield response to water of quinoa (Chenopodium quinoaWilld.) with FAO-AquaCrop. Agronomy. 101: 499-508.
  17. Geerts S Raes D (2009) Deficit irrigation as on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management. 96: 1275-1284.
  18. Gerik T J., Rosenthal W D and Duncan R R (1988) Simulating grain yield and plant development of ratoon grain sorghum over diverse environments. Field Crop Research.19(1): 63–74.
  19. Heng L. k., Hsiao T. C., Evett S., Howell T and Steduto P(2009) Validating the FAO AquaCrop model for Irrigated and Water Deficient field maize. Agronomy. 101(3): 488-498.
  20. HsiaoT C., Heng L K., Steduto P., Raes D and Fereres E (2009) AquaCrop-Model parameterization and testing for maize. Agronomy. 101: 448-459.
  21. Hussein F., Janat M and Yakoub A (2011) Simulating cotton yield response to deficit irrigation with the FAO AquaCrop model. Agricultural Research. 9(4):1319-1330.
  22. Katerji N., Campi P and Mastrorilli M (2013) Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management. 130: 14-26.
  23. Kunz R., Schulze R., Mabhaudhi T and Mokonoto O (2014) Modeling the potential impacts of climate change on yield and water use of sugarcane and sugar beet: preliminary results based on the AquaCrop model. South African SugarAssociation. 87: 285-289.
  24. Malik A., Shakir A. S., Ajmal M., Jamal Khan M and Ali Kan T (2017) Canopy cover, biomass and root yield under different irrigation and field management practices in semi-arid regions of Pakistan. Water Resources Management. 31: 4275-4292.
  25. Mousavizadeh S. F., Honar T and Ahmadi S H (2016) Assessment of the AquaCrop model for simulating canola under different irrigation management in a semiarid area. Plant Production. 10(4): 1735-6814.
  26. Raes D., Steduto P., Hsiao T C and Freres E (2012) Reference manual AquaCrop, FAO, land and water division, Rome Italy.
  27. Salemi H., Mohd Soom M. A., Lee T. S., Mousavi S. F., Ganji A and Kamil Yusoff M (2011) Application of AquaCrop model in deficit irrigation management of winter wheat in arid region. Agricultural Research. 610: 2204-2215.
  28. Stricevic R., Cosic M., Djurovic N., Pejic B and Maksimovic L (2011) Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agricultural Water Management. 98: 1615-1621.
  29. Todorovic M., Albrizio R., Zivotic L., Abisaab M and Stwckle C (2009) Assessment of AquaCrop, CropSyst and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy. 101: 509-521.
  30. Van Dam J. C., Huygen J., Wesseling J. G., Feddes R. A., Kabat P., Van Walsum P. E. V., Groenendijk P and Van Diepen C A (1997) Theory of SWAP Version 2.0, Report #71. Department Water Resources. Wageningen Agricultural University. 167 pp.
  31. Zeleke K., Luckett D and Cowley R (2011) Calibration and Testing of the FAO AquaCrop Model for Canola. Agronomy. 103, 1610-1618.