Performance evaluation and optimization of water delivery schedule in the Zarinehroud irrigation network

Document Type : Research Paper


1 Department of Water Engineering, Urmia University, Urmia, IRAN

2 Department of Irrigation & Reclamation Engineering, University of Tehran, Karaj, IRAN

3 Department of Hydraulic Structures, University of Tarbiat Modares, Tehran, IRAN


Restoration of the Urmia Lake requires an increase of water productivity in irrigation networks. This research was aimed to evaluate the performance of water delivery in the Zarinehroud irrigation network, the Urmia Lake Basin, and to provide with an optimization plan. An intensive survey was carried out in the area under left main canals of the network duringSummer 2015.The water demand for irrigation was computed in each unitfor different courses of the year,and compared with the allocated water by the network authority. The four performance indicators of Molden-Gates were computed. Results indicated that the efficiency index with mean value of 56% represents a poor condition. While the adequacy index, with mean value of 97%,shows a good condition; the corresponding durability index (with mean value of 38%), and equity index (with mean value of 50%) represent the lack of balance between water supply and demand in the study area. The non-uniform distribution of surface water has lead to an increase in water depth and groundwater salinity in the lowland areas, and water logging in parts of upland areas. In this study, water delivery schedule for current crop pattern in the region was optimized using PSO algorithm. Accordingly, the four network indices (i.e. efficiency, adequacy, dependability and equity) could be upgraded to 65, 100, 8, and 60 percent, respectively. The results confirm the potential of great improvement in water productivity, even by continuing the traditional crop pattern used in the Zarinehroud irrigation network.


  1. جمالی ر. (1395) ارزیابی راندمان آبیاری زهکشی زرینه رود و تاثیر بهبود آن بر حجم جریان ورودی به دریاچه ارومیه. پایان نامه کارشناسی ارشد دانشگاه ارومیه، ارومیه، 138ص.
  2. خوشخوی م. (1384) اصول باغبانی.چاپ سیزدهم. مرکز نشر دانشگاه شیراز، شیراز. 596 ص. 
  3. دفترمطالعات پایه منابع آب شرکت آب منطقه­ای استان آذربایجان­غربی. (1394) مطالعات آماربرداری منابع آب. 188 ص.
  4. شاهرخ­نیا م. و جوان م. (1385) بررسی شاخص­های عملکرد آبیاری در شبکه آبیاری درودزن (مرودشت استان فارس). تحقیقات مهندسی کشاورزی 7(29): 46-33.
  5. قادری ک. و قادری نسب‌‌گروهی ف. (1395) بررسی عمکلرد الگوریتم‌‌های بهینه‌‌سازی PSO و ICA در ارائه برنامه تحویل و توزیع بهینه آب؛ مطالعه موردی کانال اردیبهشت شبکه آبیاری درودزن استان فارس. پانزدهمین کنفرانس هیدرولیک ایران، دانشکده فنی و مهندسی، دانشگاه بین‌‌المللی امام خمینی)ره(، قزوین.
  6. کاظمی اربط، ح. (1384) مورفولوژی و آناتومی غلات. چاپ اول، جلد 2، انتشارات دانشگاه تبریز، تبریز. 588ص.
  7. محسنی‌‌موحد ا.، محسنی ن و نوروز‌‌پور س. (1389) ارزیابی اثرات وزن‌‌دهی به شاخص‌‌ها بر عملکرد کانال‌‌های آبیاری. آب و خاک، 6(24): 1096-1083.
  8. وردی­نژاد و. ر.، سهرابی ت.، حیدری، ن.، عراقی‌نژاد ش. و مأمن‌پوش ع. (1388) بررسی عرضه و تقاضا و برآورد بهره­وری آب کشاورزی در حوزه آبریززاینده­رود، مطالعه موردی: شبکه آبیاری سمت راست آبشار. آبیاری و زهکشی ایران. 3(2): 88-99
  9. یاسی، م. (1393) راهکار احیای دریاچه ارومیه با مدیریت زیست محیطی رودخانه های درون حوضه. مجموعه مقالات دومین همایش ملی بحران آب. دانشگاه شهرکرد، ایران. 8-1.
  10. Afrasiabikia P., Parvaresh Rizi A. and Javan M. (2017) Scenarios for improvement of water distribution in Doroodzan irrigation network based on hydraulic simulation. Computers and Electronics in Agriculture. 135: 312-320.
  11. Jiang Y., Huang Q., Huo Z. and Huang G. (2015) Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model. Agricultural Water Management. 147: 67-81.
  12. Kennedy J. and Eberhart R. (1995) Particle Swarm Optimization. Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia. 1942-1948.
  13. Korkmaz N. and Avci M. (2012) Evaluation of water delivery and irrigation performances at field level: the case of the Menemen Left Bank irrigation district in Turkey. Science and Technology. 5(2): 2079-89.
  14. Moghimi M. M. and Sepaskhah A.R. (2017) Optimization of performance measures in Doroodzan Irrigation Network. Iran Agriculture Research (IAR).36(1): 49-60.
  15. Molden D. and Gates K. (1990) Performance Measures for Evaluation of Irrigation-Water Delivery System. Irrigation and Drainage Engineering, American Society of Civil Engineering. 116(6): 804- 822.
  16. Montalvo A., Joaquín Izquierdo A., Silvia Schwarze B. and Pérez-García R. (2010) Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling. 52: 1219–1227.
  17. Murray-Rust D. and Hand Snellen W.B. (1993) Irrigation system performance assessment and diagnosis. Colombo, Srilanka, International Irrigation Management Institute.
  18. Murray-Rust, D. H., Lashari, B. and Memon, Y. (2000). Extended Project on Farmer Managed Irrigated Agriculture under the National Drainage Program (NDP): Water Distribution Equity in Sindh Province, Pakistan. International Water Management Institute (IWMI).
  19. Rezaei F., Safavi H. R., Mirchi A. and Madani K. (2017) F-MOPSO: An alternative multi-objective PSO algorithm for conjunctive water use management. Hydro-environment Research. 14:1-8.
  20. Roozbahani R., Schreider S. and Abbasi B (2015) Optimal water allocation through a multi-objective compromise between environmental, social and economic preferences. Environmental Modelling & Software. 64: 18-30.