Modelling of effective components contribution of phosphate pollution transport from the agriculture, forest and rangeland land uses using SWAT (Case study: Tajan Watershed)

Document Type : Research Paper

Abstract

Evaluation of water quality for water resources management is absolutely necessary.Non-point pollution are important in determining eutrophication of fresh water. The principle causes of this issue is high concentrations of nutrients in the water resources especially nitrogen and phosphorus. Understand the relationship land use and affecting factors in phosphate transport are the priority to assess the phosphate and predict its effect on surface water quality. Therefore, in this study the Soil and Water Assessment Tool (SWAT) was used for the simulation of phosphate in the Tajan watershed. Forest, agricultural and pasture, respectively contribute 54, 19 and 24 percent of the area and 24, 24 and 44 percent of phosphate. Among the agricultural cultivations, wheat fields produce the lowest load. Following the results in all land uses except pasture the main mechanism of phosphate transport has been from the sediment. The results of this study could be useful guide in order to preserve and protect the ecosystem of Tajan watershed from more degradation and promote sustainable development in this region.

Keywords


  1. اسماعیلی ساری، س. (1381) آلاینده‌ها، بهداشت و استاندارد در محیط‌زیست. انتشارات نقش مهر، 767 ص.
  2. ایمانی س. دلاور م. و نیک‌سخن م. (1394) تأثیر زمانی کاربری‌های مختلف بر کیفیت آب دریاچة زریبار. زمین‌شناسی ایران. 36: 42-51.
  3. سلمان ماهینی ع. فضلی ح. دریانبرد ر. کامیاب ح. فندرسکی ف. داور ل. آذرم‌دل ح. مهری ا. و خیرآبادی (1390) پهنه‌بندی و تعیین درجة حساسیت اکولوژیکی نواحی ساحلی. سازمان حفاظت محیط‌زیست. ۲۳۱ ص.
  4. جیرانی ف. (۱۳۸۸) شبیه‌سازی فرسایش، انتقال رسوب و راهکارهای حفاظتی در حوضة آبریز گاماسیاب با استفاده از مدل SWAT. دانشگاه تربیت .مدرس. تهران. پایان‌نامة کارشناسی‌ارشد.
  5. کارآموز م. احمدی آ. و طاهریون م. (۱۳۸۸) ارزیابی اثرات بهترین راهکارهای مدیریتی در حوزة آبخیز بر بهره‌برداری کمّی و کیفی از مخزن. علوم و مهندسی آبخیزداری ایران. ۳ (۹): ۹-۱۶.
  6. مومنی م. کلباسی م. جلالیان ا. و خادمی، ح. (1387) اثر تغییر کاربری اراضی و چرای مفرط بر هدررفت برخی شکل‌های فسفر خاک در دو منطقه از زیرحوزة آبخیز ونک. علم و فنون کشاورزی و منابع طبیعی. 12(46): 595 -606.
  7. Abbaspour K.C. Rouholahnejad E. Vaghefi S. Srinivasan R. and Yang H. (2015) Continental scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Hydrology. 524: 733-752.  
  8. Bakr N. Weindorf D.C. Bahnassy M.H. Marei S.M. and El Badawi M. (2010) Monitoring land cover changes in a newly reclaimed area of Egypt using multi temporal Landsat data. Application geography. 30: 592-605.
  9. Ballantine D. Walling D.E. and Leeks G.J. (2009) Mobilization and transport of sediment- associated phosphorus by surface runoff. Water, Air and Soil Pollution. 196: 311-320.
  10. Chen C.W. Ju Y. Chen C.F. and Dong C. (2016) Evaluation of organic pollution and eutrophication status of Kaohsiung Harbor, Taiwan. International Biodeterioration & Biodegradation. 113: 318-324.
  11. Glavan M. Pintar M. and Volk M. (2012) Land use change in a 200-year period and its effect on blue and green water flow in two Slovenian Mediterranean catchments lessons for the future. Hydrological Processes. 27(26):  3964-3980.
  12. Hao F. Zhang X. Wang X. and Ouyang W. (2012) Assesment the Relationship between Landscape Patterns and Nonpoint Source Pollution in the Danjiankou Reservoir Basin in China. The American Water Resources Association. 43: 1-16.
  13. Kieken H. Lebonvallet S. Ledoux E. Mary B. Mignolet C. Poux X. and Sauboua E. (2013) Assessing the relationship between water quality parameters and changes in landuse patterns in the Upper Manyame River, Zimbabwe. Physics and Chemistry of the Earth. 52: 130-146.
  14. Lamba J. Anita M. Thompson K.G. Karthikeyan J. and Panuska L.W. (2016) Good Effect of best management practice implementation on sediment and phosphorus load reductions at subwatershed and watershed scale using SWAT model. International Sediment Research.
  15. Moriasi D.N. Arnold J.G. et al. (2007) Model evaluation guideline for systematic quantification of accuracy in watershed simulation. T. American Society of Agricultural and Biological Engineers. 50(3): 885-900.
  16. Mittelstet A.R. Storm D.E. White M.J. (2016) Using SWAT to enhance watershed-based plans to meet numeric water quality standards. Sustainability of Water Quality and Ecology. 7: 5-21.
  17. Natha S.B. Allan J.D. Dolan D.M. Han H. and Richards R.P. (2011) Application of the soil and water assessment tool for six watersheds of Lake Erie: Model parameterization and calibration. Great Lakes Research. 37(2): 263-271.
  18. Neitsch S.L. Arnold J.G. et al. (2002) Soil and water assessment tool, theoretical documentation version 2000. Texas Water Mathematical Models of Watershe Hydrology, Water Resources Publication, Littleton. Colorado. 405p.
  19. Shrestha M.K. Recknagel F. Frizenscha J. and Meyer Y. (2016) Assessing SWAT models based on single and multisite calibration for the simulation of flow and nutrient loads in the semi arid on kaparinga catchment in South Australia. Agricultural Water Management.
  20. Somura H. Takeda I. Arnold J.G. Mori Y. Jeong J. Kannan N. and Hoffman D. (2012) Impact of suspended sediment and nutrient loading from land uses against water quality in the Hii River basin, Japan. Hydrology. 450-451(5): 25-35.
  21. Wan R. Cai S. Li H. Yang G. Li Z. and Nie X. (2014) Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China. Environmental Management. 133(2): 1-11.
  22. Yongwei G. Zhenyao S. Ruimin L. Qian H. and Xing W. (2012) A comparison of single-and multi-gauge based calibrations for hydrological modeling of the Upper Daning River Watershed in China's Three Gorges Reservoir Region. Hydrology Research. 43(6): 822-832.