Assessment of policies of changes in cropping pattern and deficit irrigation management using system dynamics modeling (Case study: Aras basin)

Document Type : Research Paper


1 PhD Student, Department of Irrigation Engineering, Agriculture and Natural Resources (Karaj), University of Tehran

2 Professor, Department of Irrigation Engineering, Agriculture and Natural Resources (Karaj), University of Tehran

3 Assistant Professor,Department of Water Engineering,Imam Khomeini International University


The control and managing water crisis can be offered and applied different strategies. In this regard, policies of changes in cropping pattern and deficit irrigation management can be considered as two strategies for optimal consumption of agricultural water. The objectives of this study were to evaluate the effect of these policies on the sustainability of agricultural and water resources in Aras basin. For this purpose, developing a system dynamics model of water resources management in Aras basin by considering economic and environmental aspects and three scenarios of changes in cropping pattern and six scenarios of deficit irrigation management were analyzed. Results showed that if using other strategies is not possible, combining of 40 percent deficit irrigation scenario with existing or optimal cropping pattern can be used to control and manage water resources in Aras basin. Also, reducing 3 percent of withdrawing of groundwater resources in agriculture, considering the high potential of surface water resources in Aras basin, will lead to sustainability of water resources and it was suggested that this strategy should be considered by managers as effective policy for reducing problems of water crisis in this basin.


  1. احمدالی خ. (1392) توسعة مدل انتقال آب مجازی برای اصلاح الگوی کشت و استفادة بهینه از آب کشاورزی در کشور. دانشگاه تهران، رسالة دکتری.
  2. بی‌نام (1392) بهنگام‌سازی طرح جامع آب کشور در حوضه‌های ارس، ارومیه، تالش- تالاب انزلی، سفیدرود بزرگ، سفیدرود- هراز، هراز- قره‌سو، گرگان‌رود و اترک. جلدهای 38-47.
  3. حسینی س.ا. و باقری ع. (1392) مدل‌سازی پویایی سیستم منابع آب دشت مشهد برای تحلیل استراتژی‌های توسعة پایدار. مجلة آب و فاضلاب، 24(4): 28-39.
  4. عباسی ف. ناصری ا. سهراب ف. باغانی ج. عباسی ن. و اکبری م. (1394) ارتقای بهره‌وری مصرف آب. سازمان تحقیقات، آموزش و ترویج کشاورزی، 68 ص.
  5. علیزاده ح. (1393) مدل‌سازی پویای بهره‌برداری از پساب با رویکرد پایداری اقتصادی و زیست‌محیطی (مطالعة موردی: دشت ورامین). دانشگاه تهران، رسالة دکتری.
  6. نظری ب. (1392) مدل‌سازی پویای شبکه‌های آبیاری با رویکرد بهره‌وری آب. دانشگاه تهران، رسالة دکتری.
  7. نوذری ح. (1388) مدیریت شوری و بهره‌برداری از زهاب کشاورزی با استفاده از تحلیل پویایی سیستم. دانشگاه تهران، رسالة دکتری.
  8. Alizadeh A. and Keshavarz A. (2005) Status of agricultural water use in Iran. In Water conservation, reuse, and recycling. Proceedings of an Iranian-American Workshop, Washington DC, USA.
  9. Bala B.K. Satter M.A. Halim M.A. and Talukdar M.S.U. (1988) Simulation of crop-irrigation systems. Agricultural Systems, 27(1): 51-65.
  10. Doorenbos J. and Kassam A.H. (1979) Yield response to water. Irrigation and Drainage Paper 33, 257 p.
  11. Fletcher E.J. (1998) The use of system dynamics as a decision support tool for the management of surface water resources. In First International Conference on New Information Technologies for Decision Making in Civil Engineering.
  12. Giordano, R. Brugnach, M. and Vurro, M. (2012) System dynamic modelling for conflicts analysis in groundwater management. International Environmental Modelling and Software Society, Ph.D. Dissertation.
  13. Kelly R.A. Jakeman A.J. Barreteau O. Borsuk M.E. ElSawah S. Hamilton S.H. and van Delden H. (2013) Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling & Software, 47: 159-181.
  14. Kijne J.W. Barker R. and Molden D.J. (2003) Water productivity in agriculture: limits and opportunities for improvement. CabI Publication, USA, 332 p.
  15. Kwakkel J.H. and Slinger J.H. (2012) A system dynamics mode-based exploratory analysis of salt water intrusion in coastal aquifers. In Proceedings of the 30th International Conference of the System Dynamics Society, St. Gallen, Switzerland.
  16. Luo Y. Khan S. Cui Y. Zhang Z. and Zhu X. (2006) Sustainable irrigation water management in the lower Yellow River Basin: a system dynamics approach. Australian Centre for International Agricultural Research Proceedings, Australia. 
  17. Madani K. and Mariño M.A. (2009) System dynamics analysis for managing Iran’s Zayandeh-Rud river basin. Water Resources Management, 23(11): 2163-2187.
  18. Saysel A. and Barlas Y. (2006) Model simplification and validation with indirect structure validity tests. System Dynamics Review, 22(3): 241-262.
  19. Saysel A.K. Barlas Y. and Yenigün O. (2002) Environmental sustainability in an agricultural development project: a system dynamics approach. Environmental Management, 64: 247-260.
  20. Simonovic S.P. and Rajasekaram V. (2004) Integrated analyses of canada's water resources: A system dynamics approach. Canadian Water Resources, 29: 223-250.
  21. Sterman J. (2002) System dynamics: systems thinking and modeling for a complex world. ESD Internal Symposium. Massachusetts Institute of Technology, USA.
  22. Sušnik J. Vamvakeridou-Lyroudia L.S. Savić D.A. and Kapelan Z. (2013) Integrated modelling of a coupled wateragricultural system using system dynamics. Water and Climate Change, 4(3): 209-231.
  23. Willmott C.J. Ackleson S.G. Davis R.E. Feddema J.J. Klink K.M. Legates D.R. and  Rowe C.M. (1985) Statistics for the evaluation and comparison of models. Geophysical Research, 90(C5): 8668-9005.