Evaluation of tomato (Solanum lycopersicum) water uptake reduction function under simultaneous salinity and water stresses

Document Type : Research Paper


1 Ph.D. Candidate, Department of Water Science, College of Agriculture and Natural Resources, Islamic Azad University, Science and Research Branch, Tehran, Iran

2 Associate Professor, Department of Water Science, College of Agriculture and Natural Resources, Islamic Azad University, Science and Research Branch, Tehran, Iran

3 Associate Professor, Islamic Azad University, Shahr-e-Qodss Branch, Tehran, Iran


The plant response of salinity and drought stresses and the role of them to reduce water absorption are expressed by several mathematical models. The reduction functions are classified additive, multiplicative and conceptual models. In this study six different macroscopic reduction functions, using data from greenhouse tomatoes, were evaluated: Van Genuchten (additive and multiplicative), Dirksen et al., Van Dam et al., Skaggs et al. and Homaee. The experiments were carried out on tomato plant in a factorial randomized complete block design with three replications. The treatments consist six levels of salinity (1, 2, 4, 6, 8 and 10 dS/m), and four levels of irrigation water (50%, 75%, 100% and 120% of crop requirement). The result indicated that in the absence of salinity stress all models were fit to the data measured, so, the results indicated that at low salinity levels, plant response to both water and salinity stress was additive and Van Genuchten additive model could simulated water uptake very well, while at higher salinity levels from 4 dS/m multiplicative models are a better fit. Among of multiplicative models, Skaggs et al. and Homaee models provided better fitness to measured data for tomato than other function, so as optimal absorption models are recommended.


  1. اختری ا.، همایی م. و حسینی ی. (١٣٩٣) مدل‌سازی پاسخ گیاه به تنش‌های شوری و کمبود ازت خاک. حفاظت منابع آب و خـاک. 4(3): 33-50.
  2. حسینی ی.، بابازاده ح. و خاکپور عربلو ب. (1394) ارزیابی توابع کاهش جذب آب گیاه فلفل در شرایط تنش هم‌زمان خشکی و شوری. پژوهش آب در کشاورزی. 4(ب): 509-523.
  3. حسینی ی.، همایی م.، کریمیان ن. و سعادت س (1387) مدل‌سازی واکنش کلزا به تنش‌های توأمان شوری و کمبود نیتروژن. علوم و فنون کشاورزی و منابع طبیعی. علوم آب و خاک. 6(ب): 721-734.
  4. حسینی ی.، همایی م.، کریمیان ن ع. و سعادت س. (١٣٨٧) اثرات فسفر و شوری بر رشد، غلظت عناصر غذایی و کارایی مصـرف آب در کلزا (Brassica napus L.). پژوهش آب در کشاورزی. 8(4): 1-18.
  5. سرایی تبریزی م. (1393) مدل‌سازی جذب آب به‌وسیلة گیاه در شرایط تنش‌های توأمان آب، شوری و نیتروژن. دانشگاه علوم و تحقیقات. تهران. پایان‌نامة دکترای تخصصی. 132 ص.
  6. سرایی تبریزی م.، همایی م.، بابازاده ح.، کاوه ف. و پارسی‌نژاد م. (1394) مدل‌سازی پاسخ ریحان به تنش توأمان شوری و کمبود نیتروژن. علوم و فنون کشاورزی و منابع طبیعی. علوم آب و خاک. 73: 45-57.
  7. عباسی ف. (1386) فیزیک خاک پیشرفته. انتشارات دانشگاه تهران. تهران. 250 ص.
  8. علیزاده ح.ع.، لیاقت ع. و نوری محمدیه م. (1388) ارزیابی توابع کاهش جذب آب توسط گوجه‌فرنگی در شرایط تنش هم‌زمان شوری و خشکی. آب و خاک (علوم و صنایع کشاورزی). 23(3): 88-97.
  9. کریمی ا.، همایی م.، لیاقت ع.م. و معز اردلان م. (١٣٨٤) یکنواختی توزیع آب و کود در سیستم آبیاری قطـره‌ای- نـواری. پژوهش کشاورزی آب، خاک و گیاه در کشاورزی. 5(2): 53-66.
  10. کیانی ع.ر.، همایی م. و میرلطیفی م. (1385) ارزیابی توابع کاهش عملکرد گندم در شرایط توأم شوری و کم‌آبی. علوم و خاک و آب. 20(1): 73-83.
  11. همایی م. (1381) واکنش گیاهان به شوری. نشریة 58. انتشارات کمیتة ملی آبیاری و زهکشی ایران. 97 ص.
  12. Cardon G.E. and Letey J. (1992) Plant water uptake terms evaluated for soil water and solute movement models. Soil Science Society American. 32: 1876-1880.
  13. Dirksen C. and Augustine D.C. (1988) Root water uptake function for no uniform pressure and osmotic potentials. Agriculture. Abstracts, pp. 188.
  14. Feddes R.A., Bresler E. and Neuman S.P. (1974) Field test of a modified numerical model for water uptake by root system. Water Resources Research. 10(6): 1199-1206.
  15. Feddes R.A., Kowalik P.J. and Zaradny H. (1978) Simulation of field water use and crop yield Prudoc. Wageningen. Netherlands Saline water in supplemental irrigation of wheat and barley rainfed agricultural. Agricultural Water Management. 78: 122-127.
  16. Feddes R.A. and Raats P.A.C. (2004) Parameters sing the soil–water– plant–root system. In: Feddes. R. A., et al (Eds.), Unsaturated Zone Modeling: Progress. Challenges and Applications. Wageningen Front is Series, 6: 95-141.
  17. Gardner W.R. (1964) Relation of root distribution to water uptake and availability. Agronomy. 56: 41-45.
  18. Gardner W.R. (1960) Dynamic aspects of water availability plants. Soil Science Society American. 89: 63-75.
  19. Green S.R., Kirkham M.B. and Clothier E. (2006) Root uptake and transpiration: From measurement and models to sustainable irrigation. Agricultural Water Management. 86: 165-176.
  20. Homaee M., Dirksen C. and Feddes R.A. (2002) Simulation of root water uptake. I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural Water Management. 57: 89-109.
  21. Homaee M. and Schmidhalter U. (2008) Water integration by Plants root under non-uniform soil salinity. Irrigation. Soil Science Society American. 27: 83-95.
  22. Homaee M. (1999) Root water uptake under non-uniform transient salinity and water stress. Ph.D. Dissertation. Wageningen Agricultural University. The Netherlands. 173 pp.
  23. Homaee M., Feddes R.A. and Dirksen C. (2002b) Simulation of root water uptake. II. Non-uniform transient water stress using different macroscopic reduction functions. Agricultural Water Management. 57: 111-126.
  24. Huston J.L., Dudley L.M. and Wagenet R.J. (1990) Modeling transient root zone salinity. In K.K. Tanji (ed.), Agricultural salinity assessment and management. Manuals and reports on engineering practice No. 71. American Society of Civil Engineers. Irrigation and Drainage Division. New York.
  25. Maas E.V. and Hoffman G.J. (1977) Crop salt tolerance Current assessment. J. Irrigation and Drainage Div., American Society of Civil Engineers. 103: 115-134.
  26. Molz F.J. and Remson I. (1971) Application of an extraction term model to the study of moisture flow to plant roots. Agronomy. 63: 72-77.
  27. Nimah M.N. and Hanks R.G. (1973) Model for estimating soil water, plant, and atmospheric interrelations. I. Description and sensitivity. Soil Science Society American. 37: 522-527.
  28. Saadat S. and Homaee M. (2015) Modeling sorghum response to irrigation water salinity at early growth stage. Agricultural Water Management. 152: 119-124.
  29. Skaggs T.H., van Genuchten M., Th Shouse P.J. and Poss J.A. (2006) Root uptake and transpiration: From measurements and models to sustainable irrigations. Agricultural Water Management. 86: 140-179.
  30. van Dam J.C., Huygen J., Wesseling J.G., Feddes R.A., Kabat P., Van Walsum P.E.V. and Groenendijk P. (1997) Theory of SWAP. 2th Ed. Simulation of water flow, solute transport plant growth in the soil-water-atmosphere-plant environment. Report No.71, Department of Water Resources, Wageningen Agricultural University, 167 pp.
  31. van Genuchten M.Th. (1987) A numerical model for water and solute movement in and below the root zone. Research Report No 121, Unaided State Salinity Laboratory. Riverside. California, 221 pp.
  32. van Genuchten M.Th. and Hoffman G.J. (1984) Analysis of crop production, In: Sheinberg I and Shalhevet J (Eds.), soil salinity under irrigation. Springer Verlag. 258-271.
  33. van Genuchten M.Th. and Gupta S.K. (1993) A reassessment of the crop salt tolerance response function. Indian Society of Soil Science. 41: 730-737.