Risk assessment of climate change impacts on production and phenology of wheat (case study: Ahvaz Region)

Document Type : Research Paper


1 Assistant Professors, Department of Soil and Water, Agricultural Facualty, Shahrood University, Shahrood, Iran

2 Associate Professors, Department of Science and Water Engineering, Tehran University, Tehran, Iran

3 Assistant Professors, Department of Military Geography Department, Imam Hossein, Tehran, Iran

4 Professors, Water Sciences Engineering Facualty, Shahid Chamran University, Ahwaz, Iran

5 Assistant Professor, Khuzestan Agriculture and Natural Resources Research Center (KANRC), Ahwaz, Iran


In recent years, human activities has resulted increases in atmospheric carbon dioxide (CO2) concentration. Increase in [CO2] has caused global warming and Climate change. The aim of this study was to assess potential climate change impact on production for one of the most important varieties of wheat (chamran) in Ahvaz Region. For this purpose, thirteen AOGCM models and two greenhouse gases emission (GHG) scenarios (A2 and B1) was selected. Daily temperature and precipitation data were calculated for two future periods (2015-2045 and 2070-2099) under five probability levels (0.10, 0.25, 0.50, 0.75 and 0.90). The combination of temperature and precipitation scenarios resulted in 50 climate change scenarios under each GHG emissions scenario (A2 and B1). Wheat growth was simulated for the baseline period (1980-2010) and future periods (2015-2045 and 2070-2100) using calibrated and validated CERES-Wheat model. Results showed the length of growing season is shortened as a result of climate change affects, especially in the 2070-2100 periods. Comparing of Wheat yield in climate change conditions with base period, showed that wheat yield in 2015-2045 and 2070-2100 is decreased about 4 and 15 percent, respectively.


  1. آبابایی ب.، سهرابی ت.، میرزایی ف.، رضاوردی نژاد و. و کریمی ب (1389). اثر تغییرات اقلیمی بر عملکرد گندم و تحلیل ریسک ناشی از آن (مطالعة موردی: منطقة روددشت اصفهان). دانش کشاورزی، 1/20 (3): 135-148.
  2. دلقندی م.، اندرزیان ب.، برومند نسب س.، مساح بوانی ع. و جواهری ا (1393). ارزیابی مدلCERES-Wheat  نسخه DSSAT 4.5 در شبیه‌سازی رشد، عملکرد و مراحل فنولوژی گندم (مطالعۀ موردی: شهرستان اهواز). مجلۀ آب و خاک. 28 (1): 82-91. 
  3.  رادمهر م (1376). تأثیر تنش گرما بر فیزیولوژی رشد و نمو گندم. انتشارات دانشگاه فردوسی. مشهد. 201 صفحه.
  4. کوچکی ع. و نصیری محلاتی م (1387). تأثیر تغییر اقلیم همراه با افزیش غلظت CO2 بر عملکرد گندم در ایران و ارزیابی راهکارهای سازگاری. پژوهش­های زراعی ایران. 6(1): 139-153.
  5. کوچکی ع.، نصیری محلاتی م.، بداع جمالی ج. و مرعشی ح (1385). مطالعۀ اثر تغییر اقلیم بر ویژگی‌های رشد و عملکرد گندم رقم سرداری با استفاده از مدل گردش عمومی. علوم و صنایع کشاورزی. 20(7): 83-95.
  6. مدحج ع. و فتحی ق (1387). فیزیولوژی گندم. انتشارات دانشگاه آزاد اسلامی واحد شوشتر. شوشتر. 317 صفحه.
    1. Acock  B and Acock MC (1993). Modelling approaches for predicting crop ecosystem responses to climate change. Crop Science Society of America, 306 pp.
    2. Aggarwal PK (1991). Simulation growth, development and yield of wheat in warm area. PP 429-435. In (eds) Sanders, D.A and G.H. Hettle. Wheat in heat stressed environments. Irrigated, dry areas and rice-wheat farming system, CIMMYT, Thailand, 549 p. Geerts, S., Raes, D. and M. Garcia. 2010. Using AquaCrop to derive deficit irrigation schedules. Agricultural Water Management. 98: 213-216.
    3. Easterling WE, Aggarwal PK, Batima P, Brander KM and others (2007) Food, fibre and forest products. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, p 273–313.
    4. Harmsen EW, Miller NL, Schlegel NJ and Gonzalez JE (2009) Seasonal climate change impacts on evapotranspiration, precipitation deficit and crop yield in Puerto Rico. Agricultural Water Management. 96: 1085-1095.
    5. IPCC (2001) Climate change. The science of climate change. Contribution of working group I to the second assessment report of the intergovernmental panel on climate change. Eds. Houghton, J.T., Filho, L.G.M., Callander, B.A., Harris, N., Attenberg, A. and Maskell K., 572 pp. Cambridge University Press, Cambridge.
    6. IPCC  ( 2001) Summary for Policymakers, in McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J.and White, K.S. (eds.) (2001) Climate Change 2001: Impacts, Adaptation, and Vulnerability,Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panelon Climate Change, Cambridge University Press, Cambridge, 1-17.
    7. IPCC-TGICA (2007) General guidelines on the use of scenario data for climate impact and adaptation assessment. eds. Carter, T.R., Version 2, 71p. Intergovernmental Panel on Climate Change, Task Group on Data and Scenario Support for Impact and Climate Assessment.
    8. Ko J, Ahuja L, Kimball B, Anapalli S, Mab L, Green T.R, Ruaned A.C, Wall G.W, Pinter P. and  Bader D. A (2010) Simulation of free air CO2 enriched wheat growth and interactions with water, nitrogen, and temperature. Agricultural and Forest Meteorology. 150:1331-1346.
    9. Lobell D.B and Ortiz-Manasterio I (2006). Evaluating strategies for improved water use in spring wheat with CERES. Agricultural Water Management. 84: 249-258.
    10. Luo Q, Williams MAJ, Bellotti W and Bryan B (2003). Quantitative and visual assessments of climate change impacts on South Australian wheat production. Agricultural Systems. 77: 173-186.
    11. Mereu V (2009). Climate change impact on durum wheat in Sardinia. Agrometeorology and Ecophysiology of agricultural Systems and Forestry. XXII ciclo – Universita degli Studi di Sassari. Ph.D. Dissertation.
    12. Minguez MI, Ruiz-Ramos M, Diaz-Ambrona CH, Quemada M and Sau F (2007). First-order impacts on winter and summer crops assessed with various high-resolution climate models in the Iberian Peninsula. Climate Change. 81:343–355.
    13. Mo X, Liu S, Lin Z and Guo R (2009). Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agriculture, Ecosystems and Environment. 134: 67–78.
    14. Parry ML, Rosenzweig C, Iglesias A, Livermore M and Fischer G (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ Change. 14: 53-67.
    15. Rosenberg, NJ, Kimball BA, Martin P, Cooper CF (1990). From climate and CO2 enrichment to evapotranspiration. Climate Change and US Water Resources, 286 pp.
    16. Ruiz-Ramos M and Minguez MI (2010). Evaluating uncertainty in climate change impacts on crop productivity in the Iberian Peninsula. Climate Research. 44: 69-82.
    17. Samad MA, Rahman MM, Amin MR, Sarkar ZI and Islam M (1994). Selecting trials for breeding heat tolerant wheat varieties. Pp: 379-381. in(eds) Sanders, DA and GH Hettle. Wheat in heat stressed environments. Irrigated, dry areas and rice-wheat farming system, CIMMYT, Thailand, 549 p.
    18. Semenov MA and Stratonovitch P (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Research. 41: 1-14.
    19. Semenov MA and Barrow EM (2002). LARS-WG, A Stochastic Weather Generator for Use in Climate Impact Studies. Version 3.0. User Manual.
    20. Tubiello FN and Ewert F (2002). Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. European Journal of Agronomy. 18:57–74.
      1. White JW, Hoogenboom G, Kimball BA and Wall GW (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research. 124: 357–368.