Investigating the effect of different levels of conventional Defficit irrigation compared to partial root drying technique on yield and water use efficiency in potato

Document Type : Research Paper

Authors

1 Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

2 Tehran University

10.22059/jwim.2025.385011.1204

Abstract

The increasing demand for water due to population growth and climate change has caused a decrease in agricultural water resources in areas that are facing water shortages. Therefore, a field experiment was conducted in an arid region of Iran (Medicinal research center of Islamic Azad University of Shahr-e-Qods branch) to evaluate the effects of two irrigation systems [conventional drip irrigation (DI) and partial root drying (PRD)] and three irrigation levels [100%, 75%, and 55% of crop evapotranspiration (I100, I75, and I55, respectively)] on the growth traits, tuber yield, and water productivity (WP) of potato (Solanum tuberosum L.) during the 2023 and 2024 growing seasons. Soil moisture (θv) was lower under the DI system than under the PRD system. The fresh and dry tuber yields were higher under the PRD system than under the DI system. By contrast, WP was highest with the I55 treatment (6.60 and 7.55 kg m-3) and lowest with the I100 treatment (5.53 and 6.23 kg m-3) under the DI and PRD systems, respectively. These findings indicate that full irrigation (I100) with the PRD system maximizes potato yield but decreases water productivity, whereas integration of the PRD system with deficit irrigation is effective in improving water productivity due to less water being consumed, allowing these practices to be used under scarce water conditions

Keywords

Main Subjects


  1. Ahmadi, S. H., Agharezaee, M., Kamgar-Haghighi, A. A., & Sepaskhah, A. R. (2014). Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars. Agricultural Water Management, 134, 126-136.
  2. Ahmed, B., Sultana, M., Chowdhury, M. A. H., Akhter, S., & Alam, M. J. (2017). Growth and yield performance of potato varieties under different planting dates. Bangladesh Agronomy Journal, 20(1), 25-29.
  3. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  4. Al-Qerem, R., Suleiman, A., & Shatanawi, M. (2012). Assessing tomato yield and water saving under deficit irrigation in Jordan Valley. Jordan Journal of Agricultural Sciences, 8(2).
  5. Alva, A. K., Moore, A. D., & Collins, H. P. (2012). Impact of deficit irrigation on tuber yield and quality of potato cultivars. Journal of Crop Improvement, 26(2), 211-227.
  6. Chai, Q., Gan, Y., Zhao, C., Xu, H. L., Waskom, R. M., Niu, Y., & Siddique, K. H. (2016). Regulated deficit irrigation for crop production under drought stress. A review. Agronomy for sustainable development, 36(1), 3.
  7. Çolak, Y. B., Yazar, A., Çolak, İ., Akça, H., & Duraktekin, G. (2015). Evaluation of crop water stress index (CWSI) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Agriculture and agricultural science procedia, 4, 372-382.
  8. Çolak, Y. B., Yazar, A., Sesveren, S., & Çolak, İ. (2017). Evaluation of yield and leaf water potantial (LWP) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Scientia horticulturae, 219, 10-21.
  9. Deshi, K. E., Obasi, M. O., Odiaka, N. I., Kalu, B. A., & Ifenkwe, O. P. (2015). Leaf area index values of potato (Solanum tuberosum) stored for different periods in different kinds of stores. IOSR Journal of Agriculture and Veterinary Science, 8(1), 9-19.
  10. Eid, M. A., Abdel-Salam, A. A., Salem, H. M., Mahrous, S. E., Seleiman, M. F., Alsadon, A. A., ... & Ibrahim, A. A. (2020). Interaction effects of nitrogen source and irrigation regime on tuber quality, yield, and water Use efficiency of Solanum tuberosum L. Plants, 9(1), 110.
  11. Elhani, S., Haddadi, M., Csákvári, E., Zantar, S., Hamim, A., Villányi, V., Douaik, A., & Bánfalvi, Z. (2019). Effects of partial root-zone drying and deficit irrigation on yield, irrigation water-use efficiency and some potato (Solanum tuberosum L.) quality traits under glasshouse conditions. Agricultural Water Management, 224, 105745.
  12. El Mokh, F., Nagaz, K., Masmoudi, M., & Mechlia, N. B. (2014). Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia. Journal of Agriculture and Environment for International Development (JAEID), 108(2), 227-246.
  13. English, M.J., Musick, J.T., & Murty, V.V.N. (1990). Deficit irrigation. In: Management of farm irrigation systems (Hoffman, G.J., Howell, T.A., and Solomon, K.H., Editors). ASAE Monograph no. 9. American Society of Agricultural Engineers publisher, 1020p.
  14. Erdem, T., Erdem, Y., Orta, H., & Okursoy, H. (2006). Water-yield relationships of potato under different irrigation methods and regimens. Scientia Agricola, 63, 226-231.
  15. Fabeiro, C. M. D. S. O. F., de Santa Olalla, F. M., & De Juan, J. A. (2001). Yield and size of deficit irrigated potatoes. Agricultural Water Management, 48(3), 255-266.
  16. Ferreira, T. C., & Gonçalves, D. A. (2007). Crop-yield/water-use production functions of potatoes (Solanum tuberosum) grown under differential nitrogen and irrigation treatments in a hot, dry climate. Agricultural water management, 90(1-2), 45-55.
  17. Geerts, S., & Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural water management, 96(9), 1275-1284.
  18. Greaves, G. E., & Wang, Y. M. (2017). Yield response, water productivity, and seasonal water production functions for maize under deficit irrigation water management in southern Taiwan. Plant Production Science, 20(4), 353-365.
  19. Iqbal, R., Raza, M.A., Saleem, M.F., Khan, I.H., Ahmad, S., Zaheer, M.S., Aslam, M.U., & Haider, I. (2019). Physiological and biochemical appraisal for mulching and partial rhizosphere drying of cotton. Journal of Arid Land, 11(5), 785-794.
  20. Jabro, J. D., Leib, B. G., & Jabro, A. D. (2005). Estimating soil water content using site-specific calibration of capacitance measurements from Sentek EnviroSCAN systems. Applied engineering in agriculture, 21(3), 393-399.
  21. Jensen, C. R., Svendsen, H., Andersen, M. N., & Lösch, R. (1993). Use of the root contact concept, an empirical leaf conductance model and pressure-volume curves in simulating crop water relations. Plant and Soil, 149(1), 1-26.
  22. Jovanovic, Z., Stikic, R., Vucelic-Radovic, B., Paukovic, M., Brocic, Z., Matovic, G., Rovcanin, S., & Mojevic, M. (2010). Partial root-zone drying increases WUE, N and antioxidant content in field potatoes. European Journal of Agronomy, 33(2), 124-131.
  23. Karam, F., Masaad, R., Bachour, R., Rhayem, C., & Rouphael, Y. (2009). Water and radiation use efficiencies in drip-irrigated pepper (Capsicum annuum L.): response to full and deficit irrigation regimes. European Journal of Horticultural Science, 74(2), 79.
  24. Karam, F., Saliba, R., Skaf, S., Breidy, J., Rouphael, Y., & Balendonck, J. (2011). Yield and water use of eggplants (Solanum melongena) under full and deficit irrigation regimes. Agricultural Water Management, 98(8), 1307-1316.
  25. Klute, A. (1986). Water retention: laboratory methods. Methods of soil analysis: part 1 physical and mineralogical methods, 5, 635-662.
  26. Lascano RJ, Sojka RE (2007). Preface. In: Lascano RJ, Sojka RE (Eds.). Irrigation of agricultural crops, Agronomy Monograph no. 30, 2nd edition, ASACSSA-SSSA Publishing, 664p.
  27. Liu, F., Shahnazari, A., Andersen, M. N., Jacobsen, S. E., & Jensen, C. R. (2006). Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Scientia horticulturae, 109(2), 113-117.
  28. Liu, H., Gao, Y., Sun, J., Wu, X., Jha, S. K., Zhang, H., ... & Li, Y. (2017). Responses of yield, water use efficiency and quality of short-season cotton to irrigation management: interactive effects of irrigation methods and deficit irrigation. Irrigation science, 35(2), 125-139.
  29. Loveys, B. R., Stoll, M., & Davies, W. J. (2004). Physiological approaches to enhance water use efficiency in agriculture: exploiting plant signalling in novel irrigation practice. Water use efficiency in plant biology, 113-141.
  30. Mancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7(3), 975-992.
  31. Marouelli, W. A., & Silva, W. L. (2007). Water tension thresholds for processing tomatoes under drip irrigation in Central Brazil. Irrigation Science, 25(4), 411-418.
  32. Mattar, M. A., Zin El-Abedin, T. K., Alazba, A. A., & Al-Ghobari, H. M. (2020). Soil water status and growth of tomato with partial root-zone drying and deficit drip irrigation techniques. Irrigation Science, 38(2), 163-176.
  33. Meligy, M. M., Abou-Hadid, A., El-Shinawy, M. Z., & El-Behairy, U. (2020). Impact of climate change on water requirements and the productivity on potato crop. Egyptian Journal of Horticulture, 47(1), 57-68.
  34. Müller, T., Bouleau, C. R., & Perona, P. (2016). Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds. Agricultural Water Management, 177, 54-65.
  35. Nagaz, K., El Mokh, F., Alva, A. K., Masmoudi, M. M., & Ben Mechlia, N. (2016). Potato response to different irrigation regimes using saline water. Irrigation and drainage, 65(5), 654-663.
  36. Ngouajio, M., Wang, G., & Goldy, R. (2007). Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch. Agricultural water management, 87(3), 285-291.
  37. Petropoulos, S. A., Fernandes, Â., Polyzos, N., Antoniadis, V., Barros, L., & CFR Ferreira, I. (2020). The impact of fertilization regime on the crop performance and chemical composition of potato (Solanum tuberosum) cultivated in central Greece. Agronomy, 10(4), 474.
  38. Sentek (2001). Calibration of sentek pty ltd soil moisture sensors. A report published by Sentek Pty Ltd, Stepney, p 60.
  39. Shammout, M. A. W., Qtaishat, T., Rawabdeh, H., & Shatanawi, M. (2018). Improving water use efficiency under deficit irrigation in the Jordan Valley. Sustainability, 10(11), 4317.
  40. Shao, H. B., Chu, L. Y., Jaleel, C. A., & Zhao, C. X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes rendus biologies, 331(3), 215-225.
  41. Sharma, S. P., Leskovar, D. I., Crosby, K. M., Volder, A., & Ibrahim, A. M. H. (2014). Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo) to deficit subsurface drip irrigation. Agricultural water management, 136, 75-85.
  42. Ünlü, M., Kanber, R., Şenyigit, U., Onaran, H., & Diker, K. (2006). Trickle and sprinkler irrigation of potato (Solanum tuberosum) in the Middle Anatolian Region in Turkey. Agricultural water management, 79(1), 43-71.
  43. Unver, O., Bhaduri, A., & Hoogeveen, J. (2017). Water-use efficiency and productivity improvements towards a sustainable pathway for meeting future water demand. Water Security, 1, 21-27.
  44. Vyrlas, P., Sakellariou-Makrantonaki, M., & Kalfountzos, D. (2014). Aerogation: crop root-zone aeration through subsurface drip irrigation system. WSEAS Trans. Environ. Dev, 10(2014), 446-451.
  45. Wilkinson, S. (1999). pH as a stress signal. Plant growth regulation, 29(1), 87-99.
  46. Zin El-Abedin, T. K., Mattar, M. A., Alazba, A. A., & Al-Ghobari, H. M. (2017). Comparative effects of two water-saving irrigation techniques on soil water status, yield, and water use efficiency in potato. Scientia Horticulturae, 225, 525-532.