Department of Water Engineering, Faculty of Agriculture and Natural Resources University of Mohaghegh Ardabili, Ardabil, Iran.
10.22059/jwim.2025.383457.1182
Abstract
Estimating crop water requirements and designing irrigation systems effectively depends heavily on determining evapotranspiration. Machine learning models have been developed to estimate evapotranspiration (ET) and circumvent the limitations of empirical models. In recent years, ET estimate has been improved and refined through the use of remote sensing technology. Assessment of remote sensing and machine learning for determining reference evapotranspiration This study examined the effectiveness of three models for estimating reference evapotranspiration in the Ardabil plain: random forest (RF), multiple linear regression (MLR), and support vector machine (SVM). From 2006 to 2023, synoptic stations and remote sensing provided meteorological data for the model. The FAO Penman-Monteith method was used to calculate ETo, the target parameter, within a five-synoptic station range. The time series of input and target parameters were recorded at the four synoptic stations during the model's construction and training phases. A random time series and a combination of all the data were then used in the model's final evaluation phase, which only used the data from the fifth station. R2, NSE, and RMSE were the evaluation statistics that were employed. The RF model's statistical index results were 0.7, 0.558, and 10.76, the SVM's were 0.71, -1, and 13.6, and the MLR's were 0.71, -0.688, and 21. Comparing the outcomes, it was found that the RF model was more accurate than the others. The current study demonstrated that, for areas lacking statistics, the random forest model can be a dependable and reasonably accurate model for predicting ETo using RS data.
Abdzad Gohari, A., Nik Akhtar, A., Ebrahimipak, N., & Tafteh, A. (2023). Using NIAZAB System to Determine Soybean Water Use Based on the Inverse Solution of the Production Functions under Different Irrigation Conditions. Journal of Water Research in Agriculture, 37(2), 159-169. doi:http://10.22092/jwra.2023.361550.978
Akbari Majd, A., Azizi Mobaser, J., Rasoulzadeh, A., Hasanpour Kashani, M., & Kisi, O. (2024). Enhancing the accuracy of metaheuristic neural networks in predicting underground water levels using meteorological data and remote sensing: A case study of Ardabil Plain, Iran. Ain Shams Engineering Journal, 103061. doi:https://doi.org/10.1016/j.asej.2024.103061
Alavi, M., Albaji, M., Golabi, M., Ali Naseri, A., & Homayouni, S. (2024). Estimation of sugarcane evapotranspiration from remote sensing and limited meteorological variables using machine learning models. Journal of Hydrology, 629, 130605. doi:https://doi.org/10.1016/j.jhydrol.2023.130605
Allan, R., Pereira, L., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 (Vol. 56).
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 (Vol. 300).
Amani, S., & Shafizadeh-Moghadam, H. (2023). A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agricultural water management, 284, 108324. doi:https://doi.org/10.1016/j.agwat.2023.108324
Bachour, R., Maslova, I., Ticlavilca, A. M., Walker, W. R., & McKee, M. (2016). Wavelet-multivariate relevance vector machine hybrid model for forecasting daily evapotranspiration. Stochastic Environmental Research and Risk Assessment, 30, 103-117.
Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions. In J. Biggins (Ed.), Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, August 10–15, 1986 (pp. 221-224). Dordrecht: Springer Netherlands.
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212-213, 198-212. doi:https://doi.org/10.1016/S0022-1694(98)00253-4
Blaney, H. F. (1952). Determining water requirements in irrigated areas from climatological and irrigation data.
Breiman, L. (2001). Random Forests. Machine learning, 45(1), 5-32. doi:https://10.1023/A:1010933404324
Bui, D., Pradhan, B., Löfman, O., Revhaug, I., & Dick, Ø. (2012). Landslide susceptibility assessment in the Hoa Binh Province of Vietnam: A comparison of the Levenberg-Marquardt and Bayesian regularized neural networks. Geomorphology, 171-172. doi:https://10.1016/j.geomorph.2012.04.023
Callañaupa Gutierrez, S., Segura Cajachagua, H., Saavedra Huanca, M., Flores Rojas, J., Silva Vidal, Y., & Cuxart, J. (2021). Seasonal variability of daily evapotranspiration and energy fluxes in the Central Andes of Peru using eddy covariance techniques and empirical methods. Atmospheric Research, 261, 105760. doi:https://doi.org/10.1016/j.atmosres.2021.105760
Carlson, T. N., Capehart, W. J., & Gillies, R. R. (1995). A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sensing of Environment, 54(2), 161-167. doi:https://doi.org/10.1016/0034-4257(95)00139-R
Chatfield, C., & Xing, H. (2019). The analysis of time series: an introduction with R: Chapman and hall/CRC.
Chen, J. M., & Liu, J. (2020). Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sensing of Environment, 237, 111594. doi:https://doi.org/10.1016/j.rse.2019.111594
Chia, M. Y., Huang, Y. F., & Koo, C. H. (2022). Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes. Agricultural water management, 261, 107343. doi:https://doi.org/10.1016/j.agwat.2021.107343
Chia, M. Y., Huang, Y. F., Koo, C. H., Ng, J. L., Ahmed, A. N., & El-Shafie, A. (2022). Long-term forecasting of monthly mean reference evapotranspiration using deep neural network: A comparison of training strategies and approaches. Applied Soft Computing, 126, 109221. doi:https://doi.org/10.1016/j.asoc.2022.109221
Cleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3), 285-304. doi:https://doi.org/10.1016/j.rse.2006.07.007
Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., & Célleri, R. (2015). Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Application to the Wet Páramo of Southern Ecuador. Mountain Research and Development, 35, 230-239. doi:https://10.1659/MRD-JOURNAL-D-14-0024.1
Coucke, W., & Soumali, M. (2017). Demystifying EQA statistics and reports. Biochemia Medica, 27, 37-48. doi:https://10.11613/BM.2017.006
Del Cerro, R. T. G., Subathra, M., Kumar, N. M., Verrastro, S., & George, S. T. (2021). Modelling the daily reference evapotranspiration in semi-arid region of South India: A case study comparing ANFIS and empirical models. Information Processing in Agriculture, 8(1), 173-184. doi:https://
Deng, C., Wu, J., & Shao, X. (2008). Reliability Assessment of Machining Accuracy on Support Vector Machine. Paper presented at the Intelligent Robotics and Applications, Berlin, Heidelberg.
Deris, A. M., Zain, A. M., & Sallehuddin, R. (2011). Overview of Support Vector Machine in Modeling Machining Performances. Procedia Engineering, 24, 308-312. doi:https://doi.org/10.1016/j.proeng.2011.11.2647
Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14(2), 241-258. doi:https://10.1007/s11704-019-8208-z
Dos Santos, R. A., Mantovani, E. C., Bufon, V. B., & Fernandes-Filho, E. I. (2024). Improving actual evapotranspiration estimates through an integrated remote sensing and cutting-edge machine learning approach. Computers and Electronics in Agriculture, 225, 109258. doi:https://doi.org/10.1016/j.compag.2024.109258
Dou, X., & Yang, Y. (2018). Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems. Computers and Electronics in Agriculture, 148, 95-106.
Draper, J. V., Kaber, D. B., & Usher, J. M. (1998). Telepresence. Human Factors, 40(3), 354-375. doi:10.1518/001872098779591386
Draper, N. (1998). Applied regression analysis: McGraw-Hill. Inc.
Duhan, D., Singh, D., & Arya, S. (2020). Effect of projected climate change on reference evapotranspiration in the semiarid region of central India. Journal of Water and Climate Change, 12(5), 1854-1870. doi:https://10.2166/wcc.2020.168
Elbeltagi, A., Srivastava, A., Li, P., Jiang, J., Jinsong, D., Rajput, J., ..., & Awad, A. (2023). Forecasting actual evapotranspiration without climate data based on stacked integration of DNN and meta-heuristic models across China from 1958 to 2021. Journal of Environmental Management, 345, 118697. doi:https://doi.org/10.1016/j.jenvman.2023.118697
Eslamian, S., Gohari, A., Zareian, M. J., & Firoozfar, A. R. (2012). Estimating Penman–Monteith Reference Evapotranspiration Using Artificial Neural Networks and Genetic Algorithm: A Case Study. Arabian Journal for Science and Engineering, 37. doi:https://10.1007/s13369-012-0214-5
Fakhar, M. S., & Kaviani, A. (2024). Accurate estimation of actual evapotranspiration using remote sensing data for improved water management in the Moghan plain. Water and Irrigation Management, -. doi:https://10.22059/jwim.2024.369438.1123
Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Xiukang, W., ..., & Xiang, Y. (2018). Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and Forest Meteorology, 263, 225-241. doi:https://10.1016/j.agrformet.2018.08.019
Fang, L., Zhan, X., Kalluri, S., Yu, P., Hain, C., Anderson, M., & Laszlo, I. (2022). Application of a Machine Learning Algorithm in Generating an Evapotranspiration Data Product From Coupled Thermal Infrared and Microwave Satellite Observations. Front Big Data, 5, 768676. doi:https://10.3389/fdata.2022.768676
Fattahi dolatabadi, K., Babazadeh, H., Najafi, P., & Sedghi, H. (2018). A Model for Irrigation Scheduling Using the Difference between Air and Leaf Temperature of Corn. Journal of Water Research in Agriculture, 32(2), 305-320. doi:https://10.22092/jwra.2018.116972
Feng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. (2017). Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture, 136, 71-78. doi:https://doi.org/10.1016/j.compag.2017.01.027
Forner, G., Abate, D., Mengoli, C., Palù, G., & Gussetti, N. (2015). High Cytomegalovirus (CMV) DNAemia Predicts CMV Sequelae in Asymptomatic Congenitally Infected Newborns Born to Women With Primary Infection During Pregnancy. J Infect Dis, 212(1), 67-71. doi:10.1093/infdis/jiu627
Glantz, M. H. (1990). On the interactions between climate and society. Population and Development Review, 16, 179-200. doi:https://10.1007/s11707-008-0045-6
Glantz, P. O., Rangert, B., Svensson, A., Stafford, G. D., Arnvidarson, B., Randow, K., ..., & Hultén, J. (1993). On clinical loading of osseointegrated implants. A methodological and clinical study. Clin Oral Implants Res, 4(2), 99-105. doi:10.1034/j.1600-0501.1993.040206.x
Gokcekus, H., Kassem, Y., & Woyea, L. T. (2023). A Prediction of Rainfall of Haifa Using MLR and ARIMA Models. International Journal of Engineering and Applied Physics, 3(1), 612-624. doi:https://ijeap.org/ijeap/article/view/109
Goward, S. N., Cruickshanks, G. D., & Hope, A. S. (1985). Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape. Remote Sensing of Environment, 18(2), 137-146. doi:https://doi.org/10.1016/0034-4257(85)90044-6
Granata, F. (2019). Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agricultural water management, 217, 303-315. doi:https://
Hassan, M. A., Khalil, A., Kaseb, S., & Kassem, M. A. (2017). Exploring the reference of tree-based ensemble methods in solar radiation modeling. Applied Energy, 203, 897-916. doi:https://doi.org/10.1016/j.apenergy.2017.06.104
Heckert, N., Filliben, J., Croarkin, C., Hembree, B., Guthrie, W., Tobias, P., & Prinz, J. (2002). Handbook 151: NIST/SEMATECH e-Handbook of Statistical Methods: NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD.
Heravi, H., & Zolfaghari, A.-A. (2024). Using Machine Learning Method to Estimate Evapotranspiration (Case Study: Semnan Province). Iranian Journal of Soil and Water Research, 55(5), 781-797. doi:https://10.22059/ijswr.2024.371452.669652
Hund, E., Massart, D. L., & Smeyers-Verbeke, J. (2000). Inter-laboratory studies in analytical chemistry. Analytica Chimica Acta, 423(2), 145-165. doi:https://doi.org/10.1016/S0003-2670(00)01115-6
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International journal of forecasting, 22(4), 679-688.
Jiang, X., Kang, S., Tong, L., & Li, F. (2016). Modification of evapotranspiration model based on effective resistance to estimate evapotranspiration of maize for seed production in an arid region of northwest China. Journal of Hydrology, 538, 194-207. doi:https://doi.org/10.1016/j.jhydrol.2016.04.002
Jung, M., Reichstein, M., & Bondeau, A. (2009). Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6(10), 2001-2013. doi:https://10.5194/bg-6-2001-2009
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., ..., & Zhang, K. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951-954. doi:10.1038/nature09396
Kalma, J. D., McVicar, T. R., & McCabe, M. F. (2008). Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data. Surveys in Geophysics, 29(4), 421-469. doi:https://10.1007/s10712-008-9037-z
Kalteh, A. M., & Hjorth, P. (2009). Imputation of missing values in precipitation-runoff process database. Hydrology Research, 40. doi:https://10.2166/nh.2009.001
Keshtegar, B., Kisi, O., Ghohani Arab, H., & Zounemat-Kermani, M. (2018). Subset modeling basis ANFIS for prediction of the reference evapotranspiration. Water resources management, 32, 1101-1116.
Krzywinski, M., & Altman, N. (2015). Multiple linear regression: when multiple variables are associated with a response, the interpretation of a prediction equation is seldom simple. Nature Methods, 12, 1103. doi:https://doi.org/10.1038/nmeth.3665
Leuning, R., Zhang, Y. Q., Rajaud, A., Cleugh, H., & Tu, K. (2008). A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resources Research, 44(10). doi:https://doi.org/10.1029/2007WR006562
Little, T., Thompson, B., Coxe, S., Woods, C., von Eye, A., Buskirk, T., ..., & Wang, L. (2013). The Oxford Handbook of Quantitative Methods in Psychology: Vol. 2: Statistical Analysis. doi:https://10.1093/oxfordhb/9780199934898.001.0001
Maeda, E. E., Wiberg, D. A., & Pellikka, P. K. E. (2011). Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Applied Geography, 31(1), 251-258. doi:https://doi.org/10.1016/j.apgeog.2010.05.011
Mahesh Chand, S., Shivam, P., Sanjay, S., Vishnu, P., & Sompal, S. (2022). Estimating seasonal reference evapotranspiration using limited weather data. Journal of Agrometeorology, 24(1), 99-102. doi:https://10.54386/jam.v24i1.786
Malik, A., Saggi, M. K., Rehman, S., Sajjad, H., Inyurt, S., Bhatia, A. S., ..., & Yaseen, Z. M. (2022). Deep learning versus gradient boosting machine for pan evaporation prediction. Engineering Applications of Computational Fluid Mechanics, 16(1), 570-587. doi:https://
Martí, P., González-Altozano, P., López-Urrea, R., Mancha, L. A., & Shiri, J. (2015). Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agricultural water management, 149, 81-90. doi:https://doi.org/10.1016/j.agwat.2014.10.028
Martí, P., López-Urrea, R., Mancha, L. A., González-Altozano, P., & Román, A. (2024). Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks. Agricultural water management, 300, 108903. doi:https://doi.org/10.1016/j.agwat.2024.108903
McCuen, R., Knight, Z., & Cutter, A. (2006). Evaluation of the Nash–Sutcliffe Efficiency Index. Journal of Hydrologic Engineering-J HYDROL ENG, 11. doi:10.1061/(ASCE)1084-0699(2006)11:6(597)
Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2017). Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and Electronics in Agriculture, 139, 103-114.
Mendes Reis, M., Silva, A., Junior, J., Tuffi, S., Azevedo, A., & Lopes, É. (2019). Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data. Computers and Electronics in Agriculture, 165, 104937. doi:https://10.1016/j.compag.2019.104937
Monteith, J. L. (1965). Evaporation and environment. Paper presented at the Symposia of the society for experimental biology.
Moran, M. S., Rahman, A. F., Washburne, J. C., Goodrich, D. C., Weltz, M. A., & Kustas, W. P. (1996). Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland. Agricultural and Forest Meteorology, 80(2), 87-109. doi:https://doi.org/10.1016/0168-1923(95)02292-9
Mu, Q., Heinsch, F. A., Zhao, M., & Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4), 519-536. doi:https://doi.org/10.1016/j.rse.2007.04.015
Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781-1800. doi:https://doi.org/10.1016/j.rse.2011.02.019
Muñoz Sabater, J., Dutra, E., Agusti-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., ..., & Thépaut, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13, 4349-4383. doi:https://10.5194/essd-13-4349-2021
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:https://doi.org/10.1016/0022-1694(70)90255-6
Negin, S., & Gholmohamadi, M. H. (2023). Comparison of machine learning models for estimating reference evapotranspiration using satellite and ground data. Paper presented at the 13th International Congress on Civil Engineering. https://civilica.com/doc/1853201
Nema, M. K., Khare, D., & Chandniha, S. K. (2017). Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley. Applied Water Science, 7, 3903-3910.
Niasati, Z., Ebadi, H., & Kiani, A. (2021). Estimation of reference evapotranspiration using remote sensing data in Hamedan-Bahar Plain. Iranian Water Researches Journal, 15(4), 45-58. doi:https://10.22034/iwrj.2021.11165
Nishida, K., Nemani, R. R., Running, S. W., & Glassy, J. M. (2003). An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research: Atmospheres, 108(D9). doi:https://doi.org/10.1029/2002JD002062
Noghankar, H., Raeini, M., Gholami Sefidkouhi, M. A., & Mobini, M. (2023). Prediction of daily evapotranspiration images of rice using machine learning. Iranian Journal of Soil and Water Research, 53(12), 2793-2807. doi:https://10.22059/ijswr.2022.350978.669391
Nolan, B. T., Fienen, M. N., & Lorenz, D. L. (2015). A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA. Journal of Hydrology, 531, 902-911. doi:https://doi.org/10.1016/j.jhydrol.2015.10.025
Nouri-Khajehbolagh, R., Khaledian, M., & Kavoosi-Kalashami, M. (2020). Comparison of Water Productivity Indicators for Major Crops in Ardabil Plain. Iranian Journal of Irrigation & Drainage, 14(3), 894-904.
Organization, W. M. (2008). Manual on Low-flow Estimation and Prediction: World Meteorological Organization.
Peng, L., Zeng, Z., Wei, Z., Chen, A., Wood, E. F., & Sheffield, J. (2019). Determinants of the ratio of actual to reference evapotranspiration. Global Change Biology, 25(4), 1326-1343. doi:https://doi.org/10.1111/gcb.14577
Penman, H. L., & Keen, B. A. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1032), 120-145. doi:https://:10.1098/rspa.1948.0037
Piña-Monarrez, M. R., & Ortiz-Yañez, J. F. (2015). Weibull and lognormal Taguchi analysis using multiple linear regression. Reliability Engineering & System Safety, 144, 244-253. doi:https://doi.org/10.1016/j.ress.2015.08.004
Price, J. C. (1984). Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. Journal of Geophysical Research: Atmospheres, 89(D5), 7231-7237. doi:https://doi.org/10.1029/JD089iD05p07231
Rajput, J., Singh, M., Lal, K., Khanna, M., Sarangi, A., Mukherjee, J., & Singh, S. (2022). Performance evaluation of soft computing techniques for forecasting daily reference evapotranspiration. Journal of Water and Climate Change, 14(1), 350-368. doi:https://10.2166/wcc.2022.385
Rasoulzadeh, A., & Ghoorabjiri, M. (2014). Comparing hydraulic properties of different forest floors. Hydrological Processes, 28. doi:https://10.1002/hyp.10006
Rasoulzadeh, A., & Yaghoubi, A. (2014). Inverse modeling approach for determining soil hydraulic properties as affected by application of cattle manure. International Journal of Agricultural and Biological Engineering, 7, 27-35. doi:https://10.3965/j.ijabe.20140702.004
Rodrigues, G. C., & Braga, R. P. (2021). Estimation of Daily Reference Evapotranspiration from NASA POWER Reanalysis Products in a Hot Summer Mediterranean Climate. Agronomy, 11(10), 2077.
Roerink, G. J., Su, Z., & Menenti, M. (2000). S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(2), 147-157. doi:https://doi.org/10.1016/S1464-1909(99)00128-8
Ruiz-Aĺvarez, M., Gomariz-Castillo, F., & Alonso-Sarría, F. (2021). Evapotranspiration Response to Climate Change in Semi-Arid Areas: Using Random Forest as Multi-Model Ensemble Method. Water, 13(2), 222. doi:https://doi.org/10.3390/w13020222
Samanta, B., Al-Balushi, K. R., & Al-Araimi, S. A. (2003). Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Engineering Applications of Artificial Intelligence, 16(7), 657-665. doi:https://doi.org/10.1016/j.engappai.2003.09.006
Sanjay, S., Mahesh Chand, S., & Sunil, G. (2021). Assessment of irrigation water requirements for different crops in central Punjab, India. Journal of Agrometeorology, 23(4), 481-484. doi:https://10.54386/jam.v23i4.183
Saremi, M. (2015). Determination of Effective Parameters in Estimating Reference Crop Evapotranspiration Using Artificial Neural Networks (Case study: Lorestan province). Iranian Journal of Irrigation & Drainage, 9(4), 614-623. doi:https://idj.iaid.ir/article_55085.html?lang=en
Seifi, A., & Riahi, H. (2020). Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran. Journal of Water and Climate Change, 11(1), 217-240.
Shiri, J. (2018). Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology. Journal of Hydrology, 561, 737-750. doi:https://doi.org/10.1016/j.jhydrol.2018.04.042
Shiri, J., Sadraddini, A., Nazemi, A., Kisi, O., Landeras, G., Fakheri fard, A., & Marti, P. (2014). Generalizability of Gene Expression Programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of Hydrology, 508, 1-11. doi:https://10.1016/j.jhydrol.2013.10.034
Siasar, H., & Dindarlou, A. (2020). Estimation of daily reference evapotranspiration using models of deep learning, random forest and decision tree (Case study: Sistan Plain). Iranian Water Research Journal, 14(36), 99-108.
Singh, M., Satpute, S., Prasad, V., & Sharma, K. K. (2022). Trend analysis of temperature, rainfall, and reference evapotranspiration for Ludhiana district of Indian Punjab using non-parametric statistical methods. Arabian Journal of Geosciences, 15. doi:https://10.1007/s12517-022-09517-1
Song, E., Zhu, X., Shao, G., Tian, L., Zhou, Y., Jiang, A., & Lu, J. (2023). Multi-Temporal Remote Sensing Inversion of Evapotranspiration in the Lower Yangtze River Based on Landsat 8 Remote Sensing Data and Analysis of Driving Factors. Remote Sensing, 15(11), 2887. doi:https://doi.org/10.3390/rs15112887
Steel, R. G. D., & Torrie, J. H. (1960). Principles and procedures of statistics.
Suleiman, A. A., & Hoogenboom, G. (2007). Comparison of Priestley-Taylor and FAO-56 Penman-Monteith for Daily Reference Evapotranspiration Estimation in Georgia. Journal of Irrigation and Drainage Engineering, 133(2), 175-182. doi:https://10.1061/(ASCE)0733-9437(2007)133:2(175)
Thornthwaite, C. W. (1948). An Approach Toward a Rational Classification of Climate. Soil Science, 66, 55-94.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., ..., & Papale, D. (2016). Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences, 13(14), 4291-4313. doi:https://10.5194/bg-13-4291-2016
Vapnik, V. (2013). The nature of statistical learning theory: Springer science & business media.
Vishwakarma, D., Pandey, K., Kaur, a., Kushwaha, N. L., Kumar, R., Ali, R., ..., & Kuriqi, A. (2021). Methods to estimate evapotranspiration in humid and subtropical climate conditions. Agricultural water management, 261. doi:https://10.1016/j.agwat.2021.107378
Wang, L., Kisi, O., Hu, B., Bilal, M., Zounemat-Kermani, M., & Li, H. (2017). Evaporation modelling using different machine learning techniques. International Journal of Climatology, 37(S1), 1076-1092. doi:https://doi.org/10.1002/joc.5064
Wu, L., & Fan, J. (2019). Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration. PLOS ONE, 14(5), e0217520. doi:https://10.1371/journal.pone.0217520
Zhang, K., Pan, S.-m., Zhang, W., Xu, Y., Cao, L., Hao, Y.-P., & Wang, Y. (2015). Influence of climate change on reference evapotranspiration and aridity index and their temporal-spatial variations in the Yellow River Basin, China, from 1961 to 2012. Quaternary International, 380. doi:https://10.1016/j.quaint.2014.12.037
azizi mobaser, J. , rasoulzadeh, A. and akbari majd, A. (2025). Assessment of Machine Learning and Remote Sensing in Quantifying Reference Evapotranspiration. Water and Irrigation Management, 15(1), 180-205. doi: 10.22059/jwim.2025.383457.1182
MLA
azizi mobaser, J. , , rasoulzadeh, A. , and akbari majd, A. . "Assessment of Machine Learning and Remote Sensing in Quantifying Reference Evapotranspiration", Water and Irrigation Management, 15, 1, 2025, 180-205. doi: 10.22059/jwim.2025.383457.1182
HARVARD
azizi mobaser, J., rasoulzadeh, A., akbari majd, A. (2025). 'Assessment of Machine Learning and Remote Sensing in Quantifying Reference Evapotranspiration', Water and Irrigation Management, 15(1), pp. 180-205. doi: 10.22059/jwim.2025.383457.1182
CHICAGO
J. azizi mobaser , A. rasoulzadeh and A. akbari majd, "Assessment of Machine Learning and Remote Sensing in Quantifying Reference Evapotranspiration," Water and Irrigation Management, 15 1 (2025): 180-205, doi: 10.22059/jwim.2025.383457.1182
VANCOUVER
azizi mobaser, J., rasoulzadeh, A., akbari majd, A. Assessment of Machine Learning and Remote Sensing in Quantifying Reference Evapotranspiration. Water and Irrigation Management, 2025; 15(1): 180-205. doi: 10.22059/jwim.2025.383457.1182