Assessment of Machine Learning and Remote Sensing in Quantifying Reference Evapotranspiration

Document Type : Research Paper

Authors

Department of Water Engineering, Faculty of Agriculture and Natural Resources University of Mohaghegh Ardabili, Ardabil, Iran.

10.22059/jwim.2025.383457.1182

Abstract

Estimating crop water requirements and designing irrigation systems effectively depends heavily on determining evapotranspiration. Machine learning models have been developed to estimate evapotranspiration (ET) and circumvent the limitations of empirical models. In recent years, ET estimate has been improved and refined through the use of remote sensing technology. Assessment of remote sensing and machine learning for determining reference evapotranspiration This study examined the effectiveness of three models for estimating reference evapotranspiration in the Ardabil plain: random forest (RF), multiple linear regression (MLR), and support vector machine (SVM). From 2006 to 2023, synoptic stations and remote sensing provided meteorological data for the model. The FAO Penman-Monteith method was used to calculate ETo, the target parameter, within a five-synoptic station range. The time series of input and target parameters were recorded at the four synoptic stations during the model's construction and training phases. A random time series and a combination of all the data were then used in the model's final evaluation phase, which only used the data from the fifth station. R2, NSE, and RMSE were the evaluation statistics that were employed. The RF model's statistical index results were 0.7, 0.558, and 10.76, the SVM's were 0.71, -1, and 13.6, and the MLR's were 0.71, -0.688, and 21. Comparing the outcomes, it was found that the RF model was more accurate than the others. The current study demonstrated that, for areas lacking statistics, the random forest model can be a dependable and reasonably accurate model for predicting ETo using RS data.

Keywords

Main Subjects


  1. Abdzad Gohari, A., Nik Akhtar, A., Ebrahimipak, N., & Tafteh, A. (2023). Using NIAZAB System to Determine Soybean Water Use Based on the Inverse Solution of the Production Functions under Different Irrigation Conditions. Journal of Water Research in Agriculture, 37(2), 159-169. doi:http://10.22092/jwra.2023.361550.978
  2. Akbari Majd, A., Azizi Mobaser, J., Rasoulzadeh, A., Hasanpour Kashani, M., & Kisi, O. (2024). Enhancing the accuracy of metaheuristic neural networks in predicting underground water levels using meteorological data and remote sensing: A case study of Ardabil Plain, Iran. Ain Shams Engineering Journal, 103061. doi:https://doi.org/10.1016/j.asej.2024.103061
  3. Alavi, M., Albaji, M., Golabi, M., Ali Naseri, A., & Homayouni, S. (2024). Estimation of sugarcane evapotranspiration from remote sensing and limited meteorological variables using machine learning models. Journal of Hydrology, 629, 130605. doi:https://doi.org/10.1016/j.jhydrol.2023.130605
  4. Allan, R., Pereira, L., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 (Vol. 56).
  5. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 (Vol. 300).
  6. Amani, S., & Shafizadeh-Moghadam, H. (2023). A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agricultural water management, 284, 108324. doi:https://doi.org/10.1016/j.agwat.2023.108324
  7. Bachour, R., Maslova, I., Ticlavilca, A. M., Walker, W. R., & McKee, M. (2016). Wavelet-multivariate relevance vector machine hybrid model for forecasting daily evapotranspiration. Stochastic Environmental Research and Risk Assessment, 30, 103-117.
  8. Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions. In J. Biggins (Ed.), Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, August 10–15, 1986 (pp. 221-224). Dordrecht: Springer Netherlands.
  9. Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212-213, 198-212. doi:https://doi.org/10.1016/S0022-1694(98)00253-4
  10. Blaney, H. F. (1952). Determining water requirements in irrigated areas from climatological and irrigation data.
  11. Breiman, L. (2001). Random Forests. Machine learning, 45(1), 5-32. doi:https://10.1023/A:1010933404324
  12. Bui, D., Pradhan, B., Löfman, O., Revhaug, I., & Dick, Ø. (2012). Landslide susceptibility assessment in the Hoa Binh Province of Vietnam: A comparison of the Levenberg-Marquardt and Bayesian regularized neural networks. Geomorphology, 171-172. doi:https://10.1016/j.geomorph.2012.04.023
  13. Callañaupa Gutierrez, S., Segura Cajachagua, H., Saavedra Huanca, M., Flores Rojas, J., Silva Vidal, Y., & Cuxart, J. (2021). Seasonal variability of daily evapotranspiration and energy fluxes in the Central Andes of Peru using eddy covariance techniques and empirical methods. Atmospheric Research, 261, 105760. doi:https://doi.org/10.1016/j.atmosres.2021.105760
  14. Carlson, T. N., Capehart, W. J., & Gillies, R. R. (1995). A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sensing of Environment, 54(2), 161-167. doi:https://doi.org/10.1016/0034-4257(95)00139-R
  15. Chatfield, C., & Xing, H. (2019). The analysis of time series: an introduction with R: Chapman and hall/CRC.
  16. Chen, J. M., & Liu, J. (2020). Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sensing of Environment, 237, 111594. doi:https://doi.org/10.1016/j.rse.2019.111594
  17. Chia, M. Y., Huang, Y. F., & Koo, C. H. (2022). Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes. Agricultural water management, 261, 107343. doi:https://doi.org/10.1016/j.agwat.2021.107343
  18. Chia, M. Y., Huang, Y. F., Koo, C. H., Ng, J. L., Ahmed, A. N., & El-Shafie, A. (2022). Long-term forecasting of monthly mean reference evapotranspiration using deep neural network: A comparison of training strategies and approaches. Applied Soft Computing, 126, 109221. doi:https://doi.org/10.1016/j.asoc.2022.109221
  19. Cleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3), 285-304. doi:https://doi.org/10.1016/j.rse.2006.07.007
  20. Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., & Célleri, R. (2015). Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Application to the Wet Páramo of Southern Ecuador. Mountain Research and Development, 35, 230-239. doi:https://10.1659/MRD-JOURNAL-D-14-0024.1
  21. Coucke, W., & Soumali, M. (2017). Demystifying EQA statistics and reports. Biochemia Medica, 27, 37-48. doi:https://10.11613/BM.2017.006
  22. Del Cerro, R. T. G., Subathra, M., Kumar, N. M., Verrastro, S., & George, S. T. (2021). Modelling the daily reference evapotranspiration in semi-arid region of South India: A case study comparing ANFIS and empirical models. Information Processing in Agriculture, 8(1), 173-184. doi:https://
  23. Deng, C., Wu, J., & Shao, X. (2008). Reliability Assessment of Machining Accuracy on Support Vector Machine. Paper presented at the Intelligent Robotics and Applications, Berlin, Heidelberg.
  24. Deris, A. M., Zain, A. M., & Sallehuddin, R. (2011). Overview of Support Vector Machine in Modeling Machining Performances. Procedia Engineering, 24, 308-312. doi:https://doi.org/10.1016/j.proeng.2011.11.2647
  25. Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14(2), 241-258. doi:https://10.1007/s11704-019-8208-z
  26. Dos Santos, R. A., Mantovani, E. C., Bufon, V. B., & Fernandes-Filho, E. I. (2024). Improving actual evapotranspiration estimates through an integrated remote sensing and cutting-edge machine learning approach. Computers and Electronics in Agriculture, 225, 109258. doi:https://doi.org/10.1016/j.compag.2024.109258
  27. Dou, X., & Yang, Y. (2018). Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems. Computers and Electronics in Agriculture, 148, 95-106.
  28. Draper, J. V., Kaber, D. B., & Usher, J. M. (1998). Telepresence. Human Factors, 40(3), 354-375. doi:10.1518/001872098779591386
  29. Draper, N. (1998). Applied regression analysis: McGraw-Hill. Inc.
  30. Duhan, D., Singh, D., & Arya, S. (2020). Effect of projected climate change on reference evapotranspiration in the semiarid region of central India. Journal of Water and Climate Change, 12(5), 1854-1870. doi:https://10.2166/wcc.2020.168
  31. Elbeltagi, A., Srivastava, A., Li, P., Jiang, J., Jinsong, D., Rajput, J., ..., & Awad, A. (2023). Forecasting actual evapotranspiration without climate data based on stacked integration of DNN and meta-heuristic models across China from 1958 to 2021. Journal of Environmental Management, 345, 118697. doi:https://doi.org/10.1016/j.jenvman.2023.118697
  32. Eslamian, S., Gohari, A., Zareian, M. J., & Firoozfar, A. R. (2012). Estimating Penman–Monteith Reference Evapotranspiration Using Artificial Neural Networks and Genetic Algorithm: A Case Study. Arabian Journal for Science and Engineering, 37. doi:https://10.1007/s13369-012-0214-5
  33. Fakhar, M. S., & Kaviani, A. (2024). Accurate estimation of actual evapotranspiration using remote sensing data for improved water management in the Moghan plain. Water and Irrigation Management, -. doi:https://10.22059/jwim.2024.369438.1123
  34. Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Xiukang, W., ..., & Xiang, Y. (2018). Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and Forest Meteorology, 263, 225-241. doi:https://10.1016/j.agrformet.2018.08.019
  35. Fang, L., Zhan, X., Kalluri, S., Yu, P., Hain, C., Anderson, M., & Laszlo, I. (2022). Application of a Machine Learning Algorithm in Generating an Evapotranspiration Data Product From Coupled Thermal Infrared and Microwave Satellite Observations. Front Big Data, 5, 768676. doi:https://10.3389/fdata.2022.768676
  36. Fattahi dolatabadi, K., Babazadeh, H., Najafi, P., & Sedghi, H. (2018). A Model for Irrigation Scheduling Using the Difference between Air and Leaf Temperature of Corn. Journal of Water Research in Agriculture, 32(2), 305-320. doi:https://10.22092/jwra.2018.116972
  37. Feng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. (2017). Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture, 136, 71-78. doi:https://doi.org/10.1016/j.compag.2017.01.027
  38. Forner, G., Abate, D., Mengoli, C., Palù, G., & Gussetti, N. (2015). High Cytomegalovirus (CMV) DNAemia Predicts CMV Sequelae in Asymptomatic Congenitally Infected Newborns Born to Women With Primary Infection During Pregnancy. J Infect Dis, 212(1), 67-71. doi:10.1093/infdis/jiu627
  39. Glantz, M. H. (1990). On the interactions between climate and society. Population and Development Review, 16, 179-200. doi:https://10.1007/s11707-008-0045-6
  40. Glantz, P. O., Rangert, B., Svensson, A., Stafford, G. D., Arnvidarson, B., Randow, K., ..., & Hultén, J. (1993). On clinical loading of osseointegrated implants. A methodological and clinical study. Clin Oral Implants Res, 4(2), 99-105. doi:10.1034/j.1600-0501.1993.040206.x
  41. Gokcekus, H., Kassem, Y., & Woyea, L. T. (2023). A Prediction of Rainfall of Haifa Using MLR and ARIMA Models. International Journal of Engineering and Applied Physics, 3(1), 612-624. doi:https://ijeap.org/ijeap/article/view/109
  42. Goward, S. N., Cruickshanks, G. D., & Hope, A. S. (1985). Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape. Remote Sensing of Environment, 18(2), 137-146. doi:https://doi.org/10.1016/0034-4257(85)90044-6
  43. Granata, F. (2019). Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agricultural water management, 217, 303-315. doi:https://
  44. Hassan, M. A., Khalil, A., Kaseb, S., & Kassem, M. A. (2017). Exploring the reference of tree-based ensemble methods in solar radiation modeling. Applied Energy, 203, 897-916. doi:https://doi.org/10.1016/j.apenergy.2017.06.104
  45. Heckert, N., Filliben, J., Croarkin, C., Hembree, B., Guthrie, W., Tobias, P., & Prinz, J. (2002). Handbook 151: NIST/SEMATECH e-Handbook of Statistical Methods: NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD.
  46. Heravi, H., & Zolfaghari, A.-A. (2024). Using Machine Learning Method to Estimate Evapotranspiration (Case Study: Semnan Province). Iranian Journal of Soil and Water Research, 55(5), 781-797. doi:https://10.22059/ijswr.2024.371452.669652
  47. Hund, E., Massart, D. L., & Smeyers-Verbeke, J. (2000). Inter-laboratory studies in analytical chemistry. Analytica Chimica Acta, 423(2), 145-165. doi:https://doi.org/10.1016/S0003-2670(00)01115-6
  48. Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International journal of forecasting, 22(4), 679-688.
  49. Jiang, X., Kang, S., Tong, L., & Li, F. (2016). Modification of evapotranspiration model based on effective resistance to estimate evapotranspiration of maize for seed production in an arid region of northwest China. Journal of Hydrology, 538, 194-207. doi:https://doi.org/10.1016/j.jhydrol.2016.04.002
  50. Jung, M., Reichstein, M., & Bondeau, A. (2009). Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6(10), 2001-2013. doi:https://10.5194/bg-6-2001-2009
  51. Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., ..., & Zhang, K. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951-954. doi:10.1038/nature09396
  52. Kalma, J. D., McVicar, T. R., & McCabe, M. F. (2008). Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data. Surveys in Geophysics, 29(4), 421-469. doi:https://10.1007/s10712-008-9037-z
  53. Kalteh, A. M., & Hjorth, P. (2009). Imputation of missing values in precipitation-runoff process database. Hydrology Research, 40. doi:https://10.2166/nh.2009.001
  54. Keshtegar, B., Kisi, O., Ghohani Arab, H., & Zounemat-Kermani, M. (2018). Subset modeling basis ANFIS for prediction of the reference evapotranspiration. Water resources management, 32, 1101-1116.
  55. Krzywinski, M., & Altman, N. (2015). Multiple linear regression: when multiple variables are associated with a response, the interpretation of a prediction equation is seldom simple. Nature Methods, 12, 1103. doi:https://doi.org/10.1038/nmeth.3665
  56. Leuning, R., Zhang, Y. Q., Rajaud, A., Cleugh, H., & Tu, K. (2008). A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resources Research, 44(10). doi:https://doi.org/10.1029/2007WR006562
  57. Little, T., Thompson, B., Coxe, S., Woods, C., von Eye, A., Buskirk, T., ..., & Wang, L. (2013). The Oxford Handbook of Quantitative Methods in Psychology: Vol. 2: Statistical Analysis. doi:https://10.1093/oxfordhb/9780199934898.001.0001
  58. Maeda, E. E., Wiberg, D. A., & Pellikka, P. K. E. (2011). Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Applied Geography, 31(1), 251-258. doi:https://doi.org/10.1016/j.apgeog.2010.05.011
  59. Mahesh Chand, S., Shivam, P., Sanjay, S., Vishnu, P., & Sompal, S. (2022). Estimating seasonal reference evapotranspiration using limited weather data. Journal of Agrometeorology, 24(1), 99-102. doi:https://10.54386/jam.v24i1.786
  60. Malik, A., Saggi, M. K., Rehman, S., Sajjad, H., Inyurt, S., Bhatia, A. S., ..., & Yaseen, Z. M. (2022). Deep learning versus gradient boosting machine for pan evaporation prediction. Engineering Applications of Computational Fluid Mechanics, 16(1), 570-587. doi:https://
  61. Martí, P., González-Altozano, P., López-Urrea, R., Mancha, L. A., & Shiri, J. (2015). Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agricultural water management, 149, 81-90. doi:https://doi.org/10.1016/j.agwat.2014.10.028
  62. Martí, P., López-Urrea, R., Mancha, L. A., González-Altozano, P., & Román, A. (2024). Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks. Agricultural water management, 300, 108903. doi:https://doi.org/10.1016/j.agwat.2024.108903
  63. McCuen, R., Knight, Z., & Cutter, A. (2006). Evaluation of the Nash–Sutcliffe Efficiency Index. Journal of Hydrologic Engineering-J HYDROL ENG, 11. doi:10.1061/(ASCE)1084-0699(2006)11:6(597)
  64. Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2017). Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and Electronics in Agriculture, 139, 103-114.
  65. Mendes Reis, M., Silva, A., Junior, J., Tuffi, S., Azevedo, A., & Lopes, É. (2019). Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data. Computers and Electronics in Agriculture, 165, 104937. doi:https://10.1016/j.compag.2019.104937
  66. Monteith, J. L. (1965). Evaporation and environment. Paper presented at the Symposia of the society for experimental biology.
  67. Moran, M. S., Rahman, A. F., Washburne, J. C., Goodrich, D. C., Weltz, M. A., & Kustas, W. P. (1996). Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland. Agricultural and Forest Meteorology, 80(2), 87-109. doi:https://doi.org/10.1016/0168-1923(95)02292-9
  68. Mu, Q., Heinsch, F. A., Zhao, M., & Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4), 519-536. doi:https://doi.org/10.1016/j.rse.2007.04.015
  69. Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781-1800. doi:https://doi.org/10.1016/j.rse.2011.02.019
  70. Muñoz Sabater, J., Dutra, E., Agusti-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., ..., & Thépaut, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13, 4349-4383. doi:https://10.5194/essd-13-4349-2021
  71. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:https://doi.org/10.1016/0022-1694(70)90255-6
  72. Negin, S., & Gholmohamadi, M. H. (2023). Comparison of machine learning models for estimating reference evapotranspiration using satellite and ground data. Paper presented at the 13th International Congress on Civil Engineering. https://civilica.com/doc/1853201
  73. Nema, M. K., Khare, D., & Chandniha, S. K. (2017). Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley. Applied Water Science, 7, 3903-3910.
  74. Niasati, Z., Ebadi, H., & Kiani, A. (2021). Estimation of reference evapotranspiration using remote sensing data in Hamedan-Bahar Plain. Iranian Water Researches Journal, 15(4), 45-58. doi:https://10.22034/iwrj.2021.11165
  75. Nishida, K., Nemani, R. R., Running, S. W., & Glassy, J. M. (2003). An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research: Atmospheres, 108(D9). doi:https://doi.org/10.1029/2002JD002062
  76. Noghankar, H., Raeini, M., Gholami Sefidkouhi, M. A., & Mobini, M. (2023). Prediction of daily evapotranspiration images of rice using machine learning. Iranian Journal of Soil and Water Research, 53(12), 2793-2807. doi:https://10.22059/ijswr.2022.350978.669391
  77. Nolan, B. T., Fienen, M. N., & Lorenz, D. L. (2015). A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA. Journal of Hydrology, 531, 902-911. doi:https://doi.org/10.1016/j.jhydrol.2015.10.025
  78. Nouri-Khajehbolagh, R., Khaledian, M., & Kavoosi-Kalashami, M. (2020). Comparison of Water Productivity Indicators for Major Crops in Ardabil Plain. Iranian Journal of Irrigation & Drainage, 14(3), 894-904.
  79. Organization, W. M. (2008). Manual on Low-flow Estimation and Prediction: World Meteorological Organization.
  80. Peng, L., Zeng, Z., Wei, Z., Chen, A., Wood, E. F., & Sheffield, J. (2019). Determinants of the ratio of actual to reference evapotranspiration. Global Change Biology, 25(4), 1326-1343. doi:https://doi.org/10.1111/gcb.14577
  81. Penman, H. L., & Keen, B. A. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1032), 120-145. doi:https://:10.1098/rspa.1948.0037
  82. Piña-Monarrez, M. R., & Ortiz-Yañez, J. F. (2015). Weibull and lognormal Taguchi analysis using multiple linear regression. Reliability Engineering & System Safety, 144, 244-253. doi:https://doi.org/10.1016/j.ress.2015.08.004
  83. Price, J. C. (1984). Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. Journal of Geophysical Research: Atmospheres, 89(D5), 7231-7237. doi:https://doi.org/10.1029/JD089iD05p07231
  84. Rajput, J., Singh, M., Lal, K., Khanna, M., Sarangi, A., Mukherjee, J., & Singh, S. (2022). Performance evaluation of soft computing techniques for forecasting daily reference evapotranspiration. Journal of Water and Climate Change, 14(1), 350-368. doi:https://10.2166/wcc.2022.385
  85. Rasoulzadeh, A., & Ghoorabjiri, M. (2014). Comparing hydraulic properties of different forest floors. Hydrological Processes, 28. doi:https://10.1002/hyp.10006
  86. Rasoulzadeh, A., & Yaghoubi, A. (2014). Inverse modeling approach for determining soil hydraulic properties as affected by application of cattle manure. International Journal of Agricultural and Biological Engineering, 7, 27-35. doi:https://10.3965/j.ijabe.20140702.004
  87. Rodrigues, G. C., & Braga, R. P. (2021). Estimation of Daily Reference Evapotranspiration from NASA POWER Reanalysis Products in a Hot Summer Mediterranean Climate. Agronomy, 11(10), 2077.
  88. Roerink, G. J., Su, Z., & Menenti, M. (2000). S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(2), 147-157. doi:https://doi.org/10.1016/S1464-1909(99)00128-8
  89. Ruiz-Aĺvarez, M., Gomariz-Castillo, F., & Alonso-Sarría, F. (2021). Evapotranspiration Response to Climate Change in Semi-Arid Areas: Using Random Forest as Multi-Model Ensemble Method. Water, 13(2), 222. doi:https://doi.org/10.3390/w13020222
  90. Samanta, B., Al-Balushi, K. R., & Al-Araimi, S. A. (2003). Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Engineering Applications of Artificial Intelligence, 16(7), 657-665. doi:https://doi.org/10.1016/j.engappai.2003.09.006
  91. Sanjay, S., Mahesh Chand, S., & Sunil, G. (2021). Assessment of irrigation water requirements for different crops in central Punjab, India. Journal of Agrometeorology, 23(4), 481-484. doi:https://10.54386/jam.v23i4.183
  92. Saremi, M. (2015). Determination of Effective Parameters in Estimating Reference Crop Evapotranspiration Using Artificial Neural Networks (Case study: Lorestan province). Iranian Journal of Irrigation & Drainage, 9(4), 614-623. doi:https://idj.iaid.ir/article_55085.html?lang=en
  93. Seifi, A., & Riahi, H. (2020). Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran. Journal of Water and Climate Change, 11(1), 217-240.
  94. Shiri, J. (2018). Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology. Journal of Hydrology, 561, 737-750. doi:https://doi.org/10.1016/j.jhydrol.2018.04.042
  95. Shiri, J., Sadraddini, A., Nazemi, A., Kisi, O., Landeras, G., Fakheri fard, A., & Marti, P. (2014). Generalizability of Gene Expression Programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of Hydrology, 508, 1-11. doi:https://10.1016/j.jhydrol.2013.10.034
  96. Siasar, H., & Dindarlou, A. (2020). Estimation of daily reference evapotranspiration using models of deep learning, random forest and decision tree (Case study: Sistan Plain). Iranian Water Research Journal, 14(36), 99-108.
  97. Singh, M., Satpute, S., Prasad, V., & Sharma, K. K. (2022). Trend analysis of temperature, rainfall, and reference evapotranspiration for Ludhiana district of Indian Punjab using non-parametric statistical methods. Arabian Journal of Geosciences, 15. doi:https://10.1007/s12517-022-09517-1
  98. Song, E., Zhu, X., Shao, G., Tian, L., Zhou, Y., Jiang, A., & Lu, J. (2023). Multi-Temporal Remote Sensing Inversion of Evapotranspiration in the Lower Yangtze River Based on Landsat 8 Remote Sensing Data and Analysis of Driving Factors. Remote Sensing, 15(11), 2887. doi:https://doi.org/10.3390/rs15112887
  99. Steel, R. G. D., & Torrie, J. H. (1960). Principles and procedures of statistics.
  100. Suleiman, A. A., & Hoogenboom, G. (2007). Comparison of Priestley-Taylor and FAO-56 Penman-Monteith for Daily Reference Evapotranspiration Estimation in Georgia. Journal of Irrigation and Drainage Engineering, 133(2), 175-182. doi:https://10.1061/(ASCE)0733-9437(2007)133:2(175)
  101. Thornthwaite, C. W. (1948). An Approach Toward a Rational Classification of Climate. Soil Science, 66, 55-94.
  102. Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., ..., & Papale, D. (2016). Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences, 13(14), 4291-4313. doi:https://10.5194/bg-13-4291-2016
  103. Vapnik, V. (2013). The nature of statistical learning theory: Springer science & business media.
  104. Vishwakarma, D., Pandey, K., Kaur, a., Kushwaha, N. L., Kumar, R., Ali, R., ..., & Kuriqi, A. (2021). Methods to estimate evapotranspiration in humid and subtropical climate conditions. Agricultural water management, 261. doi:https://10.1016/j.agwat.2021.107378
  105. Wang, L., Kisi, O., Hu, B., Bilal, M., Zounemat-Kermani, M., & Li, H. (2017). Evaporation modelling using different machine learning techniques. International Journal of Climatology, 37(S1), 1076-1092. doi:https://doi.org/10.1002/joc.5064
  106. Wu, L., & Fan, J. (2019). Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration. PLOS ONE, 14(5), e0217520. doi:https://10.1371/journal.pone.0217520
  107. Zhang, K., Pan, S.-m., Zhang, W., Xu, Y., Cao, L., Hao, Y.-P., & Wang, Y. (2015). Influence of climate change on reference evapotranspiration and aridity index and their temporal-spatial variations in the Yellow River Basin, China, from 1961 to 2012. Quaternary International, 380. doi:https://10.1016/j.quaint.2014.12.037