Comparison of different classification methods in estimating sugar beet canopy cover fraction using drone images

Document Type : Research Paper

Authors

Department of Water Science and Engeering, Faculty of Agricultural and Natural Resources, Imam Khomeini International University, Qazvin, Iran.

10.22059/jwim.2024.383445.1181

Abstract

Canopy cover fraction (CCF) is one of vital parameters to determine crop appearance and stress detection. Recent advancement in technologies and availability of digital camera with high quality provide suitable condition for monitoring and determining canopy cover fraction during whole growing season without disturbing. In this study sugar beet aerial photos taken from research field of science institute in Switzerland was used. A number of 481 images were taken in the visible spectrum band at an average height of 10 meters above the ground using a DJI MATRICE 100 drone on four different dates. To determine the canopy cover fraction, five supervised classification methods, including Mahalanobis distance (MahD), maximum likelihood (MaxLh), minimum distance (MinD), neural network (NN) and support vector machine (SVM) were evaluated. The results showed that SVM and MaxLh methods with an overall accuracy (OA) of 99% had the best results in image classification and CCF calculation. The comparison of the obtained results for all imaging dates showed that in terms of processing time, the MaxLh method with a relatively simple mechanism is the most appropriate method in estimating the sugar beet CCF and compared to the methods based on machine learning, like NN and SVM, it is faster and can be used as an alternative method with high accuracy and very close to machine learning methods.

Keywords

Main Subjects


  1. Behrens, T., & Diepenbrock, W. (2006). Using Digital Image Analysis to Describe Canopies of Winter Oilseed Rape (Brassica napus L.) during Vegetative Developmental Stages. Journal of Agronomy and Crop Science, 192(4), 295–302. https://doi.org/10.1111/J.1439-037X.2006.00211.X
  2. Bonan, G. B. (1993). Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sensing of Environment, 43(3), 303-314. https://doi.org/10.1016/0034-4257(93)90072-6
  3. Bryson, R. J., Paveley, N. D., Clark, W. S., Sylvester-Bradley, R., & Scott, R. K. (1997). Use of in-field measurements of green leaf area and incident radiation to estimate the effects of yellow rust epidemics on the yield of winter wheat. European Journal of Agronomy, 7(1-3), 53-62. https://doi.org/10.1016/S1161-0301(97)00025-7
  4. Cardille, J. A., Saah, D., Crowley, M. A., & Clinton, N. E. (2024). Cloud-Based Remote Sensing with Google Earth Engine. In Cloud-Based Remote Sensing with Google Earth Engine. https://doi.org/10.1007/978-3-031-26588-4
  5. Chang, C. C., & Lin, C. J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3). https://doi.org/10.1145/1961189.1961199
  6. Chebrolu, N., Labe, T., & Stachniss, C. (2018). Robust long-term registration of UAV images of crop fields for precision agriculture. IEEE Robotics and Automation Letters, 3(4), 3097-3104. https://doi.org/10.1109/LRA.2018.2849603
  7. CHEN, J. M., & BLACK, T. A. (1992). Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15(4), 421-429. https://doi.org/10.1111/J.1365-3040.1992.TB00992.X
  8. Coy, A., Rankine, D., Taylor, M., Nielsen, D. C., & Cohen, J. (2016). Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs. Remote Sensing, 8(7), 21-25. https://doi.org/10.3390/rs8070474
  9. De la Casa, A., Ovando, G., Bressanini, L., Martínez, J., Díaz, G., & Miranda, C. (2018). Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 531-547. https://doi.org/10.1016/J.ISPRSJPRS.2018.10.018
  10. Drewry, D.T., Kumar, P., Long, S., Bernacchi, C., Liang, X.Z., & Sivapalan, M. (2010). Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. Journal of Geophysical Research: Biogeosciences, 115(G4). https://doi.org/10.1029/2010JG001340
  11. Eslami, A., Anvari, S., Karimi, N., & Mohammadi, S. (2022). Application of pixel-based and object-based ‎approaches for LULC mapping in Jiroft region, S.E. Iran. Ecopersia, 10(1), 71-83.
  12. Friha, O., Ferrag, M. A., Shu, L., Maglaras, L., & Wang, X. (2021). Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies. IEEE/CAA Journal of Automatica Sinica, 8(4), 718-752. https://doi.org/10.1109/JAS.2021.1003925
  13. Gooyandeh, M., Mirlatifi, S. M., & Akbari, M. (2019). Estimating Leaf Area Index of a corn silage field Using a Modified Commercial Digital Camera. Iranian Journal of Irrigation & Drainage, 12(6), 1396-1406. https://idj.iaid.ir/article_85906_en.html
  14. Haddadi, S. R., Soltani, M. Assessment of canopy cover fraction in sugar beet field using unmanned aerial vehicle imagery and different image segmentation methods. Iranian Journal of Soil and Water Research, 2024; 55(7), 1199-1215. doi: 10.22059/ijswr.2024.371136.669647
  15. Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2016). A Practical Guide to Support Vector Classification. https://doi.org/10.1177/02632760022050997
  16. Inoue, Y. (2020). Satellite- and drone-based remote sensing of crops and soils for smart farming – a review. Soil Science and Plant Nutrition, 66(6), 798-810. https://doi.org/10.1080/00380768.2020.1738899
  17. Lee, K.-J., & Lee, B.-W. (2011). Estimating canopy cover from color digital camera image of rice field. Journal of Crop Science and Biotechnology, 14(2), 151-155. https://doi.org/10.1007/s12892-011-0029-z
  18. Li, Y., Chen, D., Walker, C. N., & Angus, J. F. (2010). Estimating the nitrogen status of crops using a digital camera. Field Crops Research, 118(3), 221-227. https://doi.org/10.1016/J.FCR.2010.05.011
  19. Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., & Stachniss, C. (2017). UAV-based crop and weed classification for smart farming. Proceedings-IEEE International Conference on Robotics and Automation, 3024-3031. https://doi.org/10.1109/ICRA.2017.7989347
  20. Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Madrigal, V. P., Mallinis, G., Dor, E. Ben, Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., de Lima, M. I., de Lima, J. L. M. P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., … & Toth, B. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10(4). https://doi.org/10.3390/rs10040641
  21. Miraki, M., Sohrabi, H., & Fatehi, P. (2022). Citrus trees identification and trees stress detection based on spectral data derived from UAVs. Research in Horticultural Sciences, 1(1), 27-40. doi: 10.22092/rhsj.2022.127815
  22. Pan, G., Li, F. M., & Sun, G. J. (2007). Digital camera based measurement of crop cover for wheat yield prediction. International Geoscience and Remote Sensing Symposium (IGARSS), 797-800. https://doi.org/10.1109/IGARSS.2007.4422917
  23. Panday, U. S., Pratihast, A. K., Aryal, J., & Kayastha, R. B. (2020). A review on drone-based data solutions for cereal crops. Drones, 4(3), 1-29. https://doi.org/10.3390/drones4030041
  24. Patanè, C. (2011). Leaf Area Index, Leaf Transpiration and Stomatal Conductance as Affected by Soil Water Deficit and VPD in Processing Tomato in Semi Arid Mediterranean Climate. Journal of Agronomy and Crop Science, 197(3), 165-176. https://doi.org/10.1111/J.1439-037X.2010.00454.X
  25. Purevdorj, T. S., Tateishi, R., Ishiyama, T., & Honda, Y. (1998). Relationships between percent vegetation cover and vegetation indices. IJRS, 19(18), 3519-3535. https://doi.org/10.1080/014311698213795
  26. Qu, Y., Meng, J., Wan, H., & Li, Y. (2016). Preliminary study on integrated wireless smart terminals for leaf area index measurement. Computers and Electronics in Agriculture, 129, 56-65. https://doi.org/10.1016/J.COMPAG.2016.09.011
  27. Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., & Moscholios, I. (2020). A compilation of UAV applications for precision agriculture. Computer Networks, 172, 107148. https://doi.org/10.1016/J.COMNET.2020.107148
  28. Rejeb, A., Abdollahi, A., Rejeb, K., & Treiblmaier, H. (2022). Drones in agriculture: A review and bibliometric analysis. In Computers and Electronics in Agriculture (Vol. 198). https://doi.org/10.1016/j.compag.2022.107017
  29. Richards, J. A., & Jia, X. (1999). Remote Sensing Digital Image Analysis. In Remote Sensing Digital Image Analysis. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03978-6
  30. Richardson, M. D., Karcher, D. E., & Purcell, L. C. (2001). Quantifying Turfgrass Cover Using Digital Image Analysis. Crop Science, 41(6), 1884-1888. https://doi.org/10.2135/CROPSCI2001.1884
  31. Rumelhart, D. E., & McClelland, J. L. (1987). Learning Internal Representations by Error Propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations (pp. 318-362). MIT Press. http://ieeexplore.ieee.org/document/6302929
  32. Running, S. W., & Coughlan, J. C. (1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 42(2), 125-154. https://doi.org/10.1016/0304-3800 (88)90112-3
  33. Shi, J., Wang, J., & Xu, Y. (2012). Object-Based Change Detection Using Georeferenced Uav Images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/(September), 177-182. https://doi.org/10.5194/isprsarchives-xxxviii-1-c22-177-2011
  34. Soltani, M. (2024). Estimating maize canopy cover percent by means of image processing algorithms. Water and Irrigation Management, 14(1), 111-122. doi: 10.22059/jwim.2023.364331.1098
  35. Steduto, P., Hsiao, T. C., Fereres, E., & Raes, D. (2012). Crop yield response to water. FAO Irrigation and Drainage Paper No.66, (October 2012), 505.
  36. Su, J., Coombes, M., Liu, C., Guo, L., & Chen, W. H. (2018). Wheat Drought Assessment by Remote Sensing Imagery Using Unmanned Aerial Vehicle. Chinese Control Conference, CCC, 2018-July, 10340-10344. https://doi.org/10.23919/ChiCC.2018.8484005
  37. Vose, J. M., Vose, J. M., Dougherty, P. M., Dougherty, P. M., Long, J. N., Long, J. N., Smith, F. W., Smith, F. W., Gholz, H. L., Gholz, H. L., Curran, P. J., & Curran, P. J. (1994). Factors influencing the amount and distribution of leaf area of pine stands. Ecological Bulletins, 43(43), 102-114.
  38. Wu, F., Lin, C., & Weng, R. (2004). Probability Estimates for Multi-Class Support Vector Machines by Pairwise Coupling. Journal of Machine Learning Research, 5, 975-1005.
  39. Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture 2012 13:6, 13(6), 693-712. https://doi.org/10.1007/S11119-012-9274-5