Predicting the effects of climate change on groundwater resources using artificial intelligence methods (Case study: Talesh plain)

Document Type : Research Paper

Authors

1 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

2 Department of Water Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.

3 Department of Water Resources Study and Research, Water Research Institute, Tehran, Iran.

Abstract

Due to the increase in greenhouse gases and numerous water and climate crises, accurate prediction of  the changes groundwater levels is very important and vital in the  water resources management. Therefore, in this paper,the  climate changes of Talesh plain is studied under RCP scenarios using Lars-WG and its water sources from SVR and ANN models. Also,aquifer pumping parameters, evapotranspiration potential, minimum and maximum temperature and  precipitation are used from (2021-2030). The results of the mean minimum and maximum temperature changes under RCP scenarios indicate the temperature increase by 0.9 and 0.69 °C. Also,studying  the accuracy of SVR and ANN models shows that the AUC in the training and testing phase in the ANN model, the maximum AUC values ​​were calculated as 0.876 and 0.769, while the SVR model, the maximum values ​​were equal to 0.867 and 0.819.Thus SVR has better predictive accuracy.In addition to that  during the time period (2005-2019) the groundwater level has decreased by 10 cm and in the SVR and ANN models by an average nine and six cm respectively more ever during in the time period(2021-2030) ground water levels have decreased in by 18, 20 and 21 cm, 20, 21 and 23 cm under the scenarios RCP2.6, RCP4.5 and RCP8 5 in SVR and ANN models,respectively.Therefor it is suggested that in Talesh plain considering the cultivation pattern appropriate to water resources in different parts of the plain should be the  priority for agricultural planners.

Keywords

Main Subjects


  1. Alizamir, M., Kisi, O., & Zounemat-Kermani, M. (2018). Modelling long-term groundwater fluctuations by extreme learning machine using hydro-climatic data. Hydrological sciences journal, 63(1), 63-73.
  2. Al-Sheikh, A., Hamrah, M., Helali, M., & Fatehi, A. (2004). Application of GIS in Groundwater Resources Balance of Talesh Plain, Applied Research in Geographical Sciences (Geographical Sciences), 3(3-4), 99-119. (In Persian).
  3. Arabameri, A., Rezaei, K., Cerda, A., Lombardo, L., & Rodrigo-Comino, J. (2019). GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Science of the total environment, 658, 160-177.
  4. Babolhekami, A., Gholami Sefidkouhi, M., & Emadi, A. (2020). The Impact of Climate Change on Reference Evapotranspiration in Mazandaran Province. Iranian Journal of Soil and Water Research, 51(2), 387-401. (In Persian) doi: 10.22059/ijswr.2019.285571.668266.
  5. Band, S. S., Heggy, E., Bateni, S. M., Karami, H., Rabiee, M., Samadianfard, S., ... & Mosavi, A. (2021). Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression. Engineering Applications of Computational Fluid Mechanics, 15(1), 1147-1158.
  6. Bayatvarkeshi, M., Fasihi, R., (2018). Monitoring of groundwater quality changes trend in four plains of Gilan province during a 12-year period. Iranian Journal of Health and Environment, 10 (4), 547-558.(In Persian).
  7. Chakraborty, M., Sarkar, S., Mukherjee, A., Shamsudduha, M., Ahmed, K. M., Bhattacharya, A., & Mitra, A. (2020). Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: Infusing physically-based model with machine learning. Science of the total environment, 748, 141107.
  8. Chen, W., Pradhan, B., Li, S., Shahabi, H., Rizeei, H. M., Hou, E., & Wang, S. (2019). Novel hybrid integration approach of bagging-based fisher’s linear discriminant function for groundwater potential analysis. Natural Resources Research, 28(4), 1239-1258.
  9. Chen, Y., Li, Z., Fan, Y., Wang, H., & Deng, H. (2015). Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environmental Research, 139, 11-19.
  10. Craig, C. A., Feng, S., & Gilbertz, S. (2019). Water crisis, drought, and climate change in the southeast United States. Land use policy, 88, 104110.
  11. Das, U. K., Roy, P., & Ghose, D. K. (2019). Modeling water table depth using adaptive Neuro-Fuzzy Inference System. ISH Journal of Hydraulic Engineering, 25(3), 291-297.
  12. Dehghani, R., Poudeh, H. T., & Izadi, Z. (2022). The effect of climate change on groundwater level and its prediction using modern meta-heuristic model. Groundwater for Sustainable Development, 16, 100702.
  13. Eichsteller, M., Njagi, T., & Nyukuri, E. (2022). The role of agriculture in poverty escapes in Kenya–Developing a capabilities approach in the context of climate change. World Development, 149, 105705.
  14. Emami, H., Jafary Godeneh, M., Nazari Samani, A., Malekian, A. (2018). Application of Geomorphometric Indices in Spatial Modeling of Groundwater Springs Occurrence in Middle Alborz Region, with Possible Control Weight Approach, Remote Sensing and GIS of Iran, 10 (2), 61-74.(In Persian).
  15. Endo, H., Kitoh, A., Mizuta, R., & Ishii, M. (2017). Future changes in precipitation extremes in East Asia and their uncertainty based on large ensemble simulations with a high-resolution AGCM. Sola, 13, 7-12.
  16. Eskandari Damaneh, H., Jafari, M., Eskandari Damaneh, H., Behnia, M., Khoorani, A., & Tiefenbacher, J. P. (2021). Testing possible scenario-based responses of vegetation under expected climatic changes in Khuzestan Province. Air, Soil and Water Research, 14, 1-17
  17. Gaur, S., Johannet, A., Graillot, D., & Omar, P. J. (2021). Modeling of groundwater level using artificial neural network algorithm and WA-SVR Model. In Groundwater resources development and planning in the semi-arid region (pp. 129-150). Springer, Cham.
  18. Gong, Y., Zhang, Y., Lan, S., & Wang, H. (2016). A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida. Water resources management, 30(1), 375-391.
  19. Guzman, S. M., Paz, J. O., Tagert, M. L. M., & Mercer, A. E. (2019). Evaluation of seasonally classified inputs for the prediction of daily groundwater levels: NARX networks vs support vector machines. Environmental Modeling & Assessment, 24(2), 223-234.
  20. Guzmán, S. M., Paz, J. O., Tagert, M. L. M., Mercer, A. E., & Pote, J. W. (2018). An integrated SVR and crop model to estimate the impacts of irrigation on daily groundwater levels. Agricultural systems, 159, 248-259.
  21. Hasirchian, M., Zahabiyoun, B., & Khazaei, M. (2019). Assessment of SDSM model performance to investigate the effect of climate change on precipitation and temperature. Irrigation and Water Engineering, 9(2), 108-120.(In Persian). doi: 10.22125/iwe.2019.87385.
  22. Hosono, T., Yamada, C., Shibata, T., Tawara, Y., Wang, C. Y., Manga, M., ... & Shimada, J. (2019). Coseismic groundwater drawdown along crustal ruptures during the 2016 Mw 7.0 Kumamoto earthquake. Water Resources Research, 55(7), 5891-5903.
  23. Huang, F., Huang, J., Jiang, S. H., & Zhou, C. (2017). Prediction of groundwater levels using evidence of chaos and support vector machine. Journal of Hydroinformatics, 19(4), 586-606.
  24. (2014). Climate Change 2013-The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, website: https://www.ipcc.ch.
  25. Iran Water Resources Management Company, (2017). Iran Water Resources Balance. Ministry of Energy, Tehran, Iran. (In Persian).
  26. Jafary Godeneh, M., Salajegheh, A., & Malekian, A. (2021). Investigating the Impact of Different Climate Change Scenarios on Groundwater Fluctuations in Arid and Semi-Arid Regions (Case Study: Kerman Plain), Irrigation & Water Engineering, 11(44), 252-275.(In Persian).
  27. Jamour, R., Eilbeigy, M., & Morsali, M. (2019). Assessment of the Land Subsidence Crisis and the Advent of Salt Water in the Minab Plain Aquifer. Iranian journal of Ecohydrology, 6(1), 223-238.(In Persian).
  28. Karimi, M., & Nabizadeh, A. (2018). Evaluation of Climate Change Impacts on Climate Parameters of Lake Urmia Watershed during 2040-2011 Using LARS-WG Model. Journal of Geography and Planning, 22( 65), 267-285.(In Persian).
  29. Kollet, S., Sulis, M., Maxwell, R.M., Paniconi, C., Putti, M., Bertoldi, G., Coon, E.T., Cordano, E., Endrizzi, S., Kikinzon, E., & Mouche, E., (2017). The integrated hydrologic model intercomparison project, IH‐MIP2: A second set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research, 53(1), 867-890.
  30. Koocheki, A., & Nasiri Mahalati, M. (2016). Climate Change Effects on Agricultural Production of Iran: II. Predicting Productivity of Field Crops and Adaptation Strategies. Iranian Journal of Field Crops Research, 14(1), 19-20.(In Persian).
  31. Kouziokas, G. N., Chatzigeorgiou, A., & Perakis, K. (2018). Multilayer feed forward models in groundwater level forecasting using meteorological data in public management. Water resources management, 32(15), 5041-5052.
  32. Kumar, D., Thakur, M., Dubey, C. S., & Shukla, D. P. (2017). Landslide susceptibility mapping & prediction using support vector machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology, 295, 115-125.
  33. Lee, S., Hong, S. M., & Jung, H. S. (2018). GIS-based groundwater potential mapping using artificial neural network and support vector machine models: the case of Boryeong city in Korea. Geocarto international, 33(8), 847-861.
  34. Li, M., Zhang, Y., Wallace, J., & Campbell, E. (2020). Estimating annual runoff in response to forest change: a statistical method based on random forest. Journal of Hydrology, 589, 125168.
  35. Mahmoudpour, H., Janat Rostami, S., & Ashrafzadeh, A. (2021). Qualitative assessment of the coastal aquifer of Talesh plain using the modified DRASTIC vulnerability model, Journal of Soil and Water Sciences (Agricultural Science and Technology and Natural Resources), 24 (3), 97-118. (In Persian).
  36. Miao, F., Wu, Y., Xie, Y., & Li, Y. (2018). Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model. Landslides, 15(3), 475-488.
  37. Mirarabi, A., Nassery, H. R., Nakhaei, M., Adamowski, J., Akbarzadeh, A. H., & Alijani, F. (2019). Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems. Environmental Earth Sciences, 78(15), 1-15.
  38. Mirzavand, M., Khoshnevisan, B., Shamshirband, S., Kisi, O., Ahmad, R., & Akib, S. (2015). Evaluating groundwater level fluctuation by support vector regression and neuro-fuzzy methods: a comparative study. Natural Hazards, 1(1), 1-15.
  39. Mohammadloo, M., Haghizadeh, A., Zinivand, H., & Tahmasbi Pour, N. (2017). Evaluation of climate change on temperature and precipitation trends in Barandozchay watershed, In the West Azerbaijan, using General Circulation Models (GCM). Geographical space, 16(56), 151-168.(In Persian).
  40. Mohammadloo, M., & Tahmasebipour, N. (2018). Assessing the Impacts of Climate Change on Climate Classifications in Parts of Northwestern Iran. Rainwater Surface Systems, 5(4), 35-46.(In Persian).
  41. Mohanty, S., Jha, M. K., Kumar, A., & Panda, D. K. (2013). Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi–Surua Inter-basin of Odisha, India. Journal of Hydrology, 495, 38-51.
  42. Mohapatra, J. B., Jha, P., Jha, M. K., & Biswal, S. (2021). Efficacy of machine learning techniques in predicting groundwater fluctuations in agro-ecological zones of India. Science of The Total Environment, 785, 147319.
  43. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
  44. Mukherjee, A., & Ramachandran, P. (2018). Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India: Analysis of comparative performances of SVR, ANN and LRM. Journal of hydrology, 558, 647-658.
  45. Mukherjee, A., Sarkar, S., Chakraborty, M., Duttagupta, S., Bhattacharya, A., Saha, D., ... & Gupta, S. (2021). Occurrence, predictors and hazards of elevated groundwater arsenic across India through field observations and regional-scale AI-based modeling. Science of The Total Environment, 759, 143511.
  46. Nadiri, A., Naderi, K., Khatibi, R., & Gharekhani, M. (2019). Modelling groundwater level variations by learning from multiple models using fuzzy logic. Hydrological sciences journal, 64(2), 210-226.
  47. Natarajan, N., & Sudheer, C. (2020). Groundwater level forecasting using soft computing techniques. Neural Computing and Applications, 32(12), 7691-7708.
  48. Osman, A. I. A., Ahmed, A. N., Chow, M. F., Huang, Y. F., & El-Shafie, A. (2021). Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Engineering Journal, 12(2), 1545-1556.
  49. Panahi, M., Misaghi, F.,& Asgari, P. (2018). Simulation and estimation of groundwater level fluctuations using GMS (Case study of Zanjan plain), Journal of Environmental Sciences, 16 (1), 1-14.(In Persian).
  50. Panahi, M., Sadhasivam, N., Pourghasemi, H. R., Rezaie, F., & Lee, S. (2020). Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). Journal of Hydrology, 588, 125033.
  51. Paryani, S., Neshat, A., Pourghasemi, H. R., Ntona, M. M., & Kazakis, N. (2022). A novel hybrid of support vector regression and metaheuristic algorithms for groundwater spring potential mapping. Science of The Total Environment, 807, 151055.
  52. Pham, B. T., Hoang, T. A., Nguyen, D. M., & Bui, D. T. (2018). Prediction of shear strength of soft soil using machine learning methods. Catena, 166, 181-191.
  53. Rabiee, M., & Karami, H. (2022). Estimation of Temporal and Spatial Variations of Groundwater Level by Combining Intelligent Models and Geostatistical Methods) Semnan Plain. Irrigation and Water Engineering, 12(3), 221-243. (In Persian).
  54. Rajaee, T., Ebrahimi, H., & Nourani, V. (2019). A review of the artificial intelligence methods in groundwater level modeling. Journal of hydrology, 572, 336-351.
  55. Raziei, T., & Pereira, L. S. (2013). Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agricultural water management, 121, 1-18.
  56. Roshni, T., Jha, M. K., & Drisya, J. (2020). Neural network modeling for groundwater-level forecasting in coastal aquifers. Neural Computing and Applications, 32(16), 12737-12754.
  57. Roshni, T., Jha, M. K., Deo, R. C., & Vandana, A. (2019). Development and evaluation of hybrid artificial neural network architectures for modeling spatio-temporal groundwater fluctuations in a complex aquifer system. Water Resources Management, 33(7), 2381-2397.
  58. Ruiz-Aĺvarez, M., Gomariz-Castillo, F., & Alonso-Sarría, F. (2021). Evapotranspiration response to climate change in semi-arid areas: Using random forest as multi-model ensemble method. Water, 13(2), 222.
  59. Sadler, J. M., Goodall, J. L., Morsy, M. M., & Spencer, K. (2018). Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and Random Forest. Journal of hydrology, 559, 43-55.
  60. Salem, G. S. A., Kazama, S., Shahid, S., & Dey, N. C. (2018). Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region. Agricultural water management, 208, 33-42.
  61. Shiri, J., Kisi, O., Yoon, H., Lee, K. K., & Nazemi, A. H. (2013). Predicting groundwater level fluctuations with meteorological effect implications-A comparative study among soft computing techniques. Computers & Geosciences, 56, 32-44.
  62. Siebert, S., Henrich, V., Frenken, K., & Burke, J. (2013) Update of the digital global map of irrigation areas to version 5. Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany and FAO, Rome, Italy.
  63. Sivapragasam, C., & Liong, S. Y. (2005). Flow categorization model for improving forecasting. Hydrology Research, 36(1), 37-48.
  64. Soleymani Nejad, S., Dourandish, A., Sabouhi, M., & Banayan Aval, M. (2019). The Effects of Climate Change on Cropping Pattern (Case Study: Mashhad Plain). Iranian Journal of Agricultural Economics and Development Research, 50(2), 249-263. (In Persian).
  65. Srivastava, A. K., Mboh, C. M., Zhao, G., Gaiser, T., & Ewert, F. (2018). Climate change impact under alternate realizations of climate scenarios on maize yield and biomass in Ghana. Agricultural Systems, 159, 157-174.
  66. Sun, Y., Wendi, D., Kim, D. E., & Liong, S. Y. (2016). Application of artificial neural networks in groundwater table forecasting–a case study in a Singapore swamp forest. Hydrology and Earth System Sciences, 20(4), 1405-1412.
  67. Suryanarayana, C., Sudheer, C., Mahammood, V., & Panigrahi, B. K. (2014). An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing, 145, 324-335.
  68. Tang, Y., Zang, C., Wei, Y., & Jiang, M. (2019). Data-driven modeling of groundwater level with least-square support vector machine and spatial–temporal analysis. Geotechnical and Geological Engineering, 37(3), 1661-1670.
  69. Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer-Verlag.
  70. Varalakshmi, V., B. Venkateswara Rao, L. SuriNaidu, & M.(2014). Tejaswini. Groundwater flow modeling of a hard rock aquifer: case study. Journal of Hydrologic Engineering ,19(5) ,877-886.
  71. Wei, Z. L., Wang, D. F., Sun, H. Y., & Yan, X. (2020). Comparison of a physical model and phenomenological model to forecast groundwater levels in a rainfall-induced deep-seated landslide. Journal of Hydrology, 586, 124894.
  72. White, J. T., Knowling, M. J., & Moore, C. R. (2020). Consequences of groundwater‐model vertical discretization in risk‐based decision‐making. Groundwater, 58(5), 695-709.
  73. Wu, J., Liu, H., Wei, G., Song, T., Zhang, C., & Zhou, H. (2019). Flash flood forecasting using support vector regression model in a small mountainous catchment. Water, 11(7), 1327.
  74. Yadav, B., Mathur, S., Ch, S., & Yadav, B. K. (2018). Data-based modelling approach for variable density flow and solute transport simulation in a coastal aquifer. Hydrological Sciences Journal, 63(2), 210-226.
  75. Yoon, H., Hyun, Y., Ha, K., Lee, K. K., & Kim, G. B. (2016). A method to improve the stability and accuracy of ANN-and SVM-based time series models for long-term groundwater level predictions. Computers & geosciences, 90, 144-155.
  76. Yoon, H., Jun, S. C., Hyun, Y., Bae, G. O., & Lee, K. K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of hydrology, 396(1-2), 128-138.
  77. Yu, H., Wen, X., Feng, Q., Deo, R. C., Si, J., & Wu, M. (2018). Comparative study of hybrid-wavelet artificial intelligence models for monthly groundwater depth forecasting in extreme arid regions, Northwest China. Water resources management, 32(1), 301-323.
  78. Zare, M., & Koch, M. (2018). Groundwater level fluctuations simulation and prediction by ANFIS-and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: Application to the Miandarband plain. Journal of Hydro-environment Research, 18, 63-76.
  79. Zhang, N., Xiao, C., Liu, B., & Liang, X. (2017). Groundwater depth predictions by GSM, RBF, and ANFIS models: a comparative assessment. Arabian Journal of Geosciences, 10(8), 1-12.
  80. Zounemat-Kermani, M., Kişi, Ö., Adamowski, J., & Ramezani-Charmahineh, A. (2016). Evaluation of data driven models for river suspended sediment concentration modeling. Journal of Hydrology, 535, 457-472.