1. قادری، ک.، زلقی، آ.، و بختیاری، ب. (1393). بهینهسازی بهرهبرداری از سیستم چند مخزنی با استفاده از الگوریتم تکامل رقابتی جوامع (SCE) (مطالعه موردی: حوضه کرخه). مدیریت آب و آبیاری، 4 (2): 228-215.
2. کمالی، پ.، ابراهیمیان، ح.، و وردینژاد، و.ر. (1394). ارزیابی و مقایسه روش بهینهسازی چندسطحی و مدل IPARM در تخمین پارامترهای نفوذ در آبیاری جویچهای. مدیریت آب و آبیاری. 5 (1): 54-43.
3. مولوی، ح.، لیاقت، ع.، و نظری، ب. (1395). ارزیابی سیاستهای اصلاح الگوی کشت و مدیریت کم آبیاری با استفاده از مدلسازی پویایی سیستم (مطالعه موردی: حوضه آبریز ارس). مدیریت آب و آبیاری، 6 (2): 236-217.
4. Aryafar, A., Khosravi, V., Zarepourfard, H. & Rooki, R. (2019). Evolving genetic programming and other AI-based models for estimating groundwater quality parameters of the Khezri plain, Eastern Iran. Environmental Earth Science, 78 (3), 1-13.
5. Ashofteh, P.-S., Bozorg-Haddad, O. & Mariño, M. A. (2013a). Climate change impact on reservoir performance indices in agricultural water supply. Irrigation and Drainage Engineering, 139 (2), 85-97.
6. Ashofteh, P.-S., Bozorg-Haddad, O. & Mariño, M. A. (2013b). Scenario assessment of streamflow simulation and its transition probability in future periods under climate change. Water Resources Management, 27 (1), 255-274.
7. Cancelliere, A., Ancarani, A. & Rossi, G. (1998). Susceptibility of water supply reservoirs to drought conditions. Hydrologic Engineering, 3(2), 140-148.
8. Chadalawada, J., Havlicek, V. & Babovic, V. (2017). A genetic programming approach to system identification of rainfall-runoff models. Water Resources Management, 31(12), 3975-3992.
9. Golubski, W. (2002). New results on fuzzy regression by using genetic programming. Genetic Programming, Lecture Notes in Computer Science. Kinsale. Ireland. 2278, 308-315.
10. Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. MIT Press. Cambridge. Massachusets. London. England. 1-819.
11. Kramer, M. D. & Zhang, D. (2000). GAPS: A genetic programming system. The Twenty-Fourth Annual International Computer Software and Applications Conference. Taipei. 25-27 October. 614-619.
12. Loucks, D. P., Stedinger, J. R. & Haith, D. A. (1981). Water resources systems planning and analysis. Englewood Cliffs. N. J. Prentice-Hall. 1-559.
13. Morales, C. O. &
Vázquez, K. R. (2004). Symbolic regression problems by genetic programming with multi-branches. Adv. in Art. Int. Lec. Not. in Com. Sci. Springer-Verlag. Mexico City. Mexico. 26-30 April. 2972, 717-726.
14. Raman, H. & Chandramouli, V. (1996). Deriving a general operating policy for reservoirs using neural network. Water Resources Planning and Management, 122(5), 342-347.
15. Searson, D. P., Leahy, D. E. & Willis, M. J. (2011). Predicting the toxicity of chemical compounds using GPTIPS: A free genetic programming toolbox for MATLAB, Intelligent Control and Computer Engineering. Lecture Notes in Electrical Engineering. Springer. 70: 83-93.
16. Sepahvand, R., Safavi, H. R. & Rezaei, F. (2019). Multi-objective planning for conjunctive use of surface and ground water resources using programming. Water Resources Management, 33(6), 2123-2137.
17. Silva, S. (2007). GPLAB: A genetic programming toolbox for Matlab, Version 3. ECOS-Evo. and Com. Sys. Gro. University of Coimbra. Portugal. 13-15.
18. Sheng-Wu, X. & Wei-Wu, W. (2003). Point-tree structure genetic programming method for discontinuous function’s regression. Wuhan University Natural Sciences, 8, 323-326.
19. Tayfur, G. (2017). Modern optimization methods in water resources planning, engineering and management. Water Resources Management, 31(10), 3205-3233.