Remote sensing-Based drought monitoring in Tehran city using nonparametric SPI

Document Type : Research Paper

Authors

1 Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

10.22059/jwim.2024.378794.1171

Abstract

Today, drought is considered a dangerous phenomenon in various regions of the world, including Iran. This fact necessitates drought monitoring and the use of remote sensing tools to determine the intensity and duration of drought. In the current study, drought in the study area of Tehran city was determined based on observational and remote sensing rainfall data. For this purpose, TRMM satellite precipitation products were extracted between 1998 and 2019 using the coding tool in Google Earth Engine. Then, the drought of the region was monitored based on the non-parametric standardized precipitation index (SPI) and observational and remote sensing precipitation data for 3, 6, and 12 months' time scales. In this context, the relationship between satellite precipitation and observations was determined using the bootstrap method. Also, to deeply examine the TRMM satellite precipitation and the measured precipitation data, the correlation between observed and satellite drought in the different time scales was estimated using Spearman, Kendall, Point-biserial and Pearson statistical methods. Finally, using RMSE and NS, the error in estimating rainfall and drought based on TRMM satellite products was calculated. Validation results showed that the calculated SPI based on TRMM rainfall data on a 6-month scale had less error. According to the findings, the RMSE and NS values for the 6-month drought estimation were 0.873 and 0.028, respectively. Additionally, the results showed that the drought in the study area between 1998 and 2019 exhibited an increasing trend.

Keywords

Main Subjects


  1. Abdi, H. (2007). The Kendall rank correlation coefficient. Encyclopedia of measurement and statistics, 2, 508-510.
  2. Abramowitz, M., & Stegun, I. A. (Eds.). (1968). Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 55). US Government printing office.
  3. AghaKouchak, A., Farahmand, A., Melton, F.S., Teixeira, J., Anderson, M.C., Wardlow, B.D. and Hain, C.R. (2015). Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics, 53(2), pp.452-480.
  4. Ahmadalipour, A., Moradkhani, H., Castelletti, A., & Magliocca, N. (2019). Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. Science of the Total Environment, 662, 672-686
  5. Ahmad, M. M., Yaseen, M., & Saqib, S. E. (2022). Climate change impacts of drought on the livelihood of dryland smallholders: Implications of adaptation challenges. International Journal of Disaster Risk Reduction80, 103210.
  6. Al-Kilani, M. R., Rahbeh, M., Al-Bakri, J., Tadesse, T., & Knutson, C. (2021). Evaluation of remotely sensed precipitation estimates from the NASA POWER project for drought detection over Jordan. Earth Systems and Environment, 5(3), 561-573.
  7. Bazrafshan, O., Zamani, H., Mozaffari, E., Azhdari, Z., & Shekari, M. (2023). Trivariate risk analysis of meteorological drought in Iran under climate change scenarios. Meteorology and Atmospheric Physics, 135(6), 52.
  8. Bodghjamali, J., Javanmard, S., & Tajbakhsh, S. (2020). The estimation of type and amount rainfall using TMI Sensor of TRMM Satellite. Journal of Climate Research, 1398(37), 38-56.
  9. Danandeh Mehr, A., Rikhtehgar Ghiasi, A., Yaseen, Z. M., Sorman, A. U., & Abualigah, L. (2023). A novel intelligent deep learning predictive model for meteorological drought forecasting. Journal of Ambient Intelligence and Humanized Computing, 14(8), 10441-10455.
  10. de Brito, C.S., da Silva, R.M., Santos, C.A.G., Neto, R.M.B., & Coelho, V.H.R., 2021. Monitoring meteorological drought in a semiarid region using two long-term satellite-estimated rainfall datasets: A case study of the Piranhas River basin, northeastern Brazil. Atmospheric Research, 250, p.105380.
  11. Dejene, I. N., Wedajo, G. K., Bayissa, Y. A., Abraham, A. M., & Cherinet, K. G. (2023). Satellite rainfall performance evaluation and application to monitor meteorological drought: a case of Omo-Gibe basin, Ethiopia. Natural Hazards, 119(1), 167-201.
  12. Easterling, D. R. (2012). Global data sets for analysis of climate extremes. In Extremes in a changing climate: detection, analysis and uncertainty (pp. 347-361). Dordrecht: Springer Netherlands.
  13. Edwards, D. C., & McKee, T. B. (1997). Characteristics of 20th century drought in the United States at multiple time scales.
  14. Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics: Methodology and distribution (pp. 569-593). New York, NY: Springer New York.
  15. Fahimi Nezhad, E., Fallah Ghalhari, G., & Bayatani, F. (2019). Forecasting maximum seasonal temperature using artificial neural networks “Tehran case study”. Asia-pacific journal of atmospheric sciences, 55, 145-153.
  16. Farahani, H., & Jahansoozi, M. (2022). Analysis of rural households' resilience to drought in Iran, case study: Bajestan County. International Journal of Disaster Risk Reduction, 82, 103331.
  17. Farahmand, A., & AghaKouchak, A. (2015). A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, 76, 140-145.
  18. Fathian, F., Dehghan, Z., Alee, M. M., Vaheddoost, B., Abualigah, L., & Danandeh Mehr, A. (2024). Regional classification of extreme droughts across Iran. Acta Geophysica, 72(5), 3485-3509.
  19. Ghozat, A., Sharafati, A., & Hosseini, S. A. (2022). Satellite-based monitoring of meteorological drought over different regions of Iran: application of the CHIRPS precipitation product. Environmental Science and Pollution Research, 29(24), 36115-36132.
  20. Gringorten, I. I. (1963). A plotting rule for extreme probability paper. Journal of Geophysical Research, 68(3), 813-814.
  21. Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of hydrology, 377(1-2), 80-91.
  22. Guttman, N. B. (1999). Accepting the standardized precipitation index: a calculation algorithm 1. JAWRA Journal of the American Water Resources Association35(2), 311-322.
  23. Habibi, S. M., & Hourcade, B. (2005). Atlas of Tehran metropolis. Tehran: Urban Processing and Planning Co1.
  24. Hagman, G., Beer, H., Bendz, M., & Wijkman, A. (1984). Prevention better than cure. Report on human and environmental disasters in the Third World. 2.
  25. Hajimir Rahimi, M., & Feizizade, B. (2007). Validation of TRMM Precipitation and Ground-Based Radar in estimation of precipitation, National Geomatics Conference 86 (GEO86), National Cartographic Center, Tehran, Iran. (In Persian).
  26. Halwatura, D., McIntyre, N., Lechner, A. M., & Arnold, S. (2017). Capability of meteorological drought indices for detecting soil moisture droughts. Journal of Hydrology: Regional Studies12, 396-412.
  27. Hauke, J., & Kossowski, T. (2011). Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones geographicae, 30(2), 87-93.
  28. Hayes, M., Svoboda, M., Wall, N., & Widhalm, M. (2011). The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bulletin of the American Meteorological Society, 92(4), 485-488.
  29. Hu, Y. M., Liang, Z. M., Liu, Y. W., Wang, J., Yao, L., & Ning, Y. (2015). Uncertainty analysis of SPI calculation and drought assessment based on the application of Bootstrap. International Journal of Climatology, 35(8).
  30. Jain, S. K., & Sudheer, K. P. (2008). Fitting of hydrologic models: a close look at the Nash–Sutcliffe index. Journal of hydrologic engineering, 13(10), 981-986.
  31. Javanmard, S., Yatagai, A., Nodzu, M. I., BodaghJamali, J., & Kawamoto, H. (2010). Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran. Advances in Geosciences, 25, 119-125.
  32. Ji, L., & Peters, A. J. (2003). Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote sensing of Environment, 87(1), 85-98.
  33. Kareem, S., Hamad, Z. J., & Askar, S. (2021). An evaluation of CNN and ANN in prediction weather forecasting: A review. Sustainable Engineering and Innovation, 3(2), 148-159.
  34. Katipoğlu, O. M., Acar, R., & Şengül, S. (2020). Comparison of meteorological indices for drought monitoring and evaluating: a case study from Euphrates basin, Turkey. Journal of Water and Climate Change, 11(S1), 29-43.
  35. Khadr, M., Morgenschweis, G., & Schlenkhoff, A. (2009). Analysis of meteorological drought in the Ruhr basin by using the standardized precipitation index. International Journal of Environmental and Ecological Engineering, 3(9), 291-300.
  36. Khanmohammadi, N., Rezaie, H., & Behmanesh, J. (2022). Investigation of drought trend on the basis of the best obtained drought index. Water Resources Management, 36(4), 1355-1375.
  37. Kornbrot, D. (2014). Point biserial correlation. Wiley StatsRef: Statistics Reference Online.
  38. Li, X., Tao, R., & Zhang, K. (2022). Drought Monitoring Based on Remote Sensing. Remote Sensing of Water‐Related Hazards, 149-168.
  39. Liu, Y. W., Wang, W., Hu, Y. M., & Liang, Z. M. (2014). Drought assessment and uncertainty analysis for Dapoling basin. Natural hazards, 74, 1613-1627.
  40. Logan, K. E., Brunsell, N. A., Jones, A. R., & Feddema, J. J. (2010). Assessing spatiotemporal variability of drought in the US central plains. Journal of Arid Environments, 74(2), 247-255.
  41. McKee, T. B., Doesken, N. J., & Kleist, J. (1995, January). Drought monitoring with multiple time scales. Proceedings of the Conference on Applied Climatology.
  42. Meteorological Organization of Tehran Province. (2018). Detailed report on the rainfall situation in Tehran province during the last five years (2009-2013), 47 pages. (In Persian)
  43. Mianabadi, A., Salari, K., & Pourmohamad, Y. (2022). Drought monitoring using the long-term CHIRPS precipitation over Southeastern Iran. Applied Water Science12(8), 183.
  44. Mishra, A., Singh, V., & Desai, V. (2009). Drought characterization: a probabilistic approach. Stochastic Environmental Research and Risk Assessment, 23(1), 41-55.
  45. Mohd Zad, S. N., Zulkafli, Z., & Muharram, F. M. (2018). Satellite rainfall (TRMM 3B42-V7) performance assessment and adjustment over Pahang River Basin, Malaysia. Remote sensing, 10(3), 388.
  46. Mokhtar, A., Jalali, M., He, H., Al-Ansari, N., Elbeltagi, A., Alsafadi, K., Abdo, H.G., Sammen, S.S., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2021). Estimation of SPEI meteorological drought using machine learning algorithms. IEEE Access, 9, 65503-65523.
  47. Naresh Kumar, M., Murthy, C. S., Sesha Sai, M. V. R., & Roy, P. S. (2009). On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 16(3), 381-389.
  48. Pande, C. B., Costache, R., Sammen, S. S., Noor, R., & Elbeltagi, A. (2023). Combination of data-driven models and best subset regression for predicting the standardized precipitation index (SPI) at the Upper Godavari Basin in India. Theoretical and Applied Climatology, 152(1), 535-558.
  49. Pandey, V., Srivastava, P. K., Mall, R. K., Munoz-Arriola, F., & Han, D. (2022). Multi-satellite precipitation products for meteorological drought assessment and forecasting in Central India. Geocarto International, 37(7), 1899-1918.
  50. Pazhanivelan, S., Geethalakshmi, V., Samykannu, V., Kumaraperumal, R., Kancheti, M., Kaliaperumal, R., ... & Yadav, M. K. (2023). Evaluation of SPI and rainfall departure based on multi-satellite precipitation products for meteorological drought monitoring in Tamil Nadu. Water, 15(7), 1435.
  51. Pourzand, F., & Noy, I. (2022). Catastrophic droughts and their economic consequences. In Oxford Research Encyclopedia of Environmental Science.
  52. Quiring, S. M. (2009). Developing objective operational definitions for monitoring drought. 425 Journal of Applied Meteorology and Climatology 48 (6), 1217-1229.
  53. Ragab, R., & Prudhomme, C. (2002). Sw-soil and Water: climate change and water resources management in arid and semi-arid regions: prospective and challenges for the 21st century. Biosystems engineering, 81(1), pp.3-34.
  54. Rahman, K. U., Hussain, A., Ejaz, N., Shang, S., Balkhair, K. S., Khan, K. U. J., ... & Rehman, N. U. (2023). Analysis of production and economic losses of cash crops under variable drought: A case study from Punjab province of Pakistan. International Journal of Disaster Risk Reduction85, 103507.
  55. Razmi, R., Sotoudeh, F., Ghane, M., & Ostad-Ali-Askari, K. (2022). Temporal–spatial analysis of drought and wet periods: case study of a wet region in Northwestern Iran (East Azerbaijan, West Azerbaijan, Ardebil and Zanjan provinces). Applied Water Science, 12(11), 251.
  56. Sakellariou, S., Spiliotopoulos, M., Alpanakis, N., Faraslis, I., Sidiropoulos, P., Tziatzios, G. A., ... & Dercas, N. (2024). Spatiotemporal Drought Assessment Based on Gridded Standardized Precipitation Index (SPI) in Vulnerable Agroecosystems. Sustainability, 16(3), 1240.
  57. Santos, J.F., Pulido‐Calvo, I., & Portela, M.M. (2010). Spatial and temporal variability of droughts in Portugal. Water Resources Research, 46(3).
  58. Savari, M., Damaneh, H. E., & Damaneh, H. E. (2023). Effective factors to increase rural households' resilience under drought conditions in Iran. International Journal of Disaster Risk Reduction, 90, 103644.
  59. Sharafi, S., Ghaleni, M. M., & Sadeghi, S. (2022). Spatial and temporal analysis of drought in various climates across Iran using the Standardized Precipitation Index (SPI). Arabian Journal of Geosciences, 15(14), 1279.
  60. Sheffield, J., Wood, E.F., & Roderick, M.L. (2012). Little change in global drought over the past 60 years. Nature, 491(7424), 435-438.
  61. Shirmohammadi, B., Moradi, H., Moosavi, V., Semiromi, M. T., & Zeinali, A. (2013). Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (case study: southeastern part of east Azerbaijan province, Iran). Natural hazards69, 389-402.
  62. Steinemann, A. C., & Cavalcanti, L. F. (2006). Developing multiple indicators and triggers for drought plans. Journal of Water Resources Planning and Management132(3), 164-174.
  63. Suliman, A.H.A., Awchi, T.A., Al-Mola, M., & Shahid, S. (2020). Evaluation of remotely sensed precipitation sources for drought assessment in Semi-Arid Iraq. Atmospheric Research, 242, 105007.
  64. McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17(22),  179-183.
  65. Thenkabail, P. S., & Gamage, M. S. D. N. (2004). The use of remote sensing data for drought assessment and monitoring in Southwest Asia, (Vol. 85). Iwmi.
  66. Tsesmelis, D. E., Vasilakou, C. G., Kalogeropoulos, K., Stathopoulos, N., Alexandris, S. G., Zervas, E., ... & Karavitis, C. A. (2022). Drought assessment using the standardized precipitation index (SPI) in GIS environment in Greece. In Computers in earth and environmental sciences (pp. 619-633). Elsevier.
  67. Vergni, L., Di Lena, B., Todisco, F., & Mannocchi, F. (2017). Uncertainty in drought monitoring by the Standardized Precipitation Index: the case study of the Abruzzo region (central Italy). Theoretical and applied climatology, 128, 13-26.
  68. Wang, L., Zhang, Y., Chen, X., Liu, Y., Wang, S., & Wang, L. (2024). Ensemble learning based on remote sensing data for monitoring agricultural drought in major winter wheat-producing areas of China. Progress in Physical Geography: Earth and Environment, 48(2), 171-190.
  69. Ward, E., Buytaert, W., Peaver, L., & Wheater, H. (2011). Evaluation of precipitation products over complex mountainous terrain: A water resources perspective. Advances in water resources34(10), 1222-1231.
  70. Wilhite, D.A., & Glantz, M.H. (1985). Understanding: the drought phenomenon: the role of definitions. Water international10(3), 111-120.