ارزیابی اندرکنش جوامع محیطی در سازگاری با کم‌آبی با استفاده از تحلیل شبکه‌های اجتماعی، مطالعه موردی: دشت اصفهان-برخوار

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران.

10.22059/jwim.2024.378063.1168

چکیده

در این پژوهش، برای شناسایی جوامع در دشت اصفهان-برخوار، از مرزهای سیاسی و طبیعی، نظیر مرزهای شهرستان‌ها، کانال‌های آبیاری موجود، موقعیت مکانی چاه‌های بهره‌برداری، میزان و نوع کشت کشاورزان و میزان مصرف آب در منطقه استفاده شده است. درمجموع ۱۵۶۹ ذی‌نفع و ۱۹ جامعه در محدوده موردمطالعه بین سال‌های ۱۳۸۹ تا ۱۳۹۴ شناسایی شده‌اند. ویژگی‌های جوامع مانند مصرف آب در واحد سطح، سود حاصل از کشاورزی در واحد سطح و شاخص‌های تحلیلی شبکه‌های اجتماعی نظیر درجه مرکزیت و بردار ویژه در محیط برنامه‌نویسی شی‌گرای پایتون محاسبه شده‌اند تا ارتباط شبکه ذی‌نفعان با وضعیت منابع آب زیرزمینی محدوده موردمطالعه برقرار و رتبه‌بندی جوامع میسر شود. نتایج نشان می‌دهد میانگین مصرف آب کل جوامع حدود ۱۶۰۰۰ مترمکعب بر هکتار، میانگین سود در هر هکتار برابر ۱۱۰ میلیون ریال و میانگین درجه مرکزیت برابر 43/0 است. جوامعی که در نواحی جنوب‌غربی محدوده واقع شده‌اند، با میانگین سود ۱۹۰ میلیون ریال در هر هکتار، برترین جوامع ازنظر بهره‌وری اقتصادی هستند. هم‌چنین، جوامع برتر با میانگین درجه مرکزیت 8/0 بیش‌ترین سطح روابط ذی‌نفعان در سطح خرد شبکه را نسبت به سایر جوامع دارند. جوامعی که کم‌ترین بهره‌وری اقتصادی را داشتند، در مناطق شمالی و غربی دشت اصفهان- برخوار و در نزدیکی جبهه‌های ورودی آبخوان واقع شده‌اند و تغییر رویکرد این جوامع نسبت به منابع آب ضروری است. در صورت افزایش بهره‌وری در سطح کلان شبکه به‌واسطه تقویت ارتباطات میان جوامع، کاهش افت تراز آبخوان در کنار ارتقای سازگاری با کم‌آبی و سطح رفاه ذی‌نفعان در کل محدوده موردمطالعه متصور است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Spatial Community Interactions in Adaptation to Water Scarcity Using Social Network Analysis, Case Study: Esfahan-Borkhar Plain

نویسندگان [English]

  • Hamoon Yousefi
  • Azadeh Ahmadi
Faculty of Civil, Water and Environmental Engineering, Shadid Beheshti University, Tehran, Iran.
چکیده [English]

In this study, using social network analysis, the local communities of the Esfahan-Borkhar plain and their capacity to adapt to water scarcity have been examined. To identify these communities at the network level, political and natural boundaries, such as county borders, existing irrigation channels, the geographical locations of extraction wells, as well as the type and extent of crops grown by farmers and their water usage in the studied area, were utilized. A total of 1,569 stakeholders and 19 communities within the study area were identified between the years 2010 and 2015. The characteristics of these communities, such as water consumption per unit area, agricultural profit per unit area, and social network analysis metrics including centrality degree and eigenvector were calculated using object-oriented programming in Python. This was done to establish the relationship between the stakeholder network and the groundwater resource status in the studied area and to rank the communities accordingly. The results indicate that the average water consumption of all communities is approximately 16,000 cubic meters per hectare, the average profit per hectare is 110 million Rials, and the average centrality degree is 0.43. Communities located in the southwestern regions of the area, with an average profit of 190 million Rials per hectare, are the top communities in terms of economic productivity. Additionally, the top communities, with an average centrality degree of 0.8, have the highest level of stakeholder interactions at the micro-network level compared to other communities. Communities with the lowest economic productivity are located in the northern and western regions of the Esfahan-Borkhar plain, near the aquifer's recharge areas, and a change in these communities' approach to water resources is necessary. If overall network productivity is increased through strengthened inter-community connections, a reduction in the aquifer's decline, alongside improved adaptation to water scarcity and stakeholder welfare across the entire study area, is conceivable.

کلیدواژه‌ها [English]

  • Adoption
  • Groundwater
  • SNA
  • Zayande-Rud
  1. Berkes, F., Colding, J., & Folke, C. (2008). Navigating social-ecological systems: building resilience for complexity and change. Cambridge university press.
  2. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10), P10008.
  3. Bodin, Ö., & Crona, B. I. (2009). The role of social networks in natural resource governance: What relational patterns make a difference? Global environmental change, 19(3), 366-374.
  4. Bonacich, P. (1972). Technique for analyzing overlapping memberships. Sociological methodology, 4, 176-185.
  5. Breiger, R. L. (2004). The analysis of social networks. Handbook of data analysis, 505-526.
  6. Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Physical review E, 70(6), 066111.
  7. Crona, B., & Bodin, Ö. (2006). What you know is who you know? Communication patterns among resource users as a prerequisite for co-management. Ecology and society, 11(2).
  8. De Nooy, W., Mrvar, A., & Batagelj, V. (2018). Exploratory social network analysis with Pajek: Revised and expanded edition for updated software (Vol. 46). Cambridge university press.
  9. Fliervoet, J. M., Geerling, G. W., Mostert, E., & Smits, A. J. (2016). Analyzing collaborative governance through social network analysis: a case study of river management along the Waal River in The Netherlands. Environmental management, 57, 355-367.
  10. Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3-5), 75-174.
  11. Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the national Academy of sciences, 99(12), 7821-7826.
  12. Golkarami, A., & Kaviani Rad, M. (2017). The effect of limited water resources on hydropolitic tensions (Case Study: Iran’s central catchment with emphasis on Zayandehrood basin). Geography and Environmental Planning, 28(1), 113-134.
  13. Newig, J., Günther, D., & Pahl-Wostl, C. (2010). Synapses in the network: learning in governance networks in the context of environmental management. Ecology and society, 15(4).
  14. Ohab, Y. S., & Ahmadi, A. (2018). Evaluating and simulation of the behavior and interactions of stakeholders and regional water company under agent-based model framework, In Lenjanat sub-basin of Zayandehrood River Basin. Iran-Water Resources Research, 14(2), 142-154 (In Persian).
  15. Ostad‐Ali‐Askari, K., Ghorbanizadeh Kharazi, H., Shayannejad, M., & Zareian, M. J. (2019). Effect of management strategies on reducing negative impacts of climate change on water resources of the Isfahan–Borkhar aquifer using MODFLOW. River Research and Applications, 35(6), 611-631.
  16. Rahimi-Feyzabad, F., Yazdanpanah, M., Gholamrezai, S., & Ahmadvand, M. (2022). Social network analysis of institutions involved in groundwater resources management: Lessons learned from Iran. Journal of Hydrology, 613, 128442.
  17. Reed, M. S., Graves, A., Dandy, N., Posthumus, H., Hubacek, K., Morris, J., Prell, C., Quinn, C. H., & Stringer, L. C. (2009). Who's in and why? A typology of stakeholder analysis methods for natural resource management. Journal of environmental management, 90(5), 1933-1949.
  18. Stein, C., Ernstson, H., & Barron, J. (2011). A social network approach to analyzing water governance: The case of the Mkindo catchment, Tanzania. Physics and Chemistry of the Earth, Parts A/B/C, 36(14-15), 1085-1092.
  19. VanderWeele, T. J. (2011). Sensitivity Analysis for Contagion Effects in Social Networks. Sociological Methods & Research, 40(2), 240-255. https://doi.org/10.1177/0049124111404821
  20. Ward, S., Meng, F., Bunney, S., Diao, K., & Butler, D. (2020). Animating inter-organisational resilience communication: A participatory social network analysis of water governance in the UK. Heliyon, 6(10).
  21. Yao, B., Zhu, J., Ma, P., Gao, K., & Ren, X. (2023). A Constrained Louvain Algorithm with a Novel Modularity. Applied Sciences, 13(6), 4045.
  22. Zanjanian, H., Abdolabadi, H., Niksokhan, M. H., & Sarang, A. (2018). Influential third party on water right conflict: A Game Theory approach to achieve the desired equilibrium (case study: Ilam dam, Iran). Journal of environmental management, 214, 283-294.