ارزیابی کیفیت آب رودخانه هراز با کاربرد شاخص‌های کیفی IRWQI، NSFWQI و CCMEWQI و بهینه‌سازی به‌روش سطح پاسخ (RSM)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران.

10.22059/jwim.2025.398878.1247

چکیده

رودخانه‌ها به‌عنوان یکی از منابع اصلی تأمین آب، نقش حیاتی در تأمین نیازهای زیست‌محیطی، کشاورزی و انسانی دارند. بررسی کیفیت آب این منابع با هدف مدیریت پایدار و کاهش مخاطرات زیست‌محیطی، امری ضروری است. انتخاب شاخص مناسب برای ارزیابی کیفیت آب سطحی، یکی از چالش‌های کلیدی در مدیریت منابع آب است. در این مطالعه، با هدف مقایسه سه شاخص پرکاربرد کیفیت آب شامل شاخص ملی ایران (IRWQI)، شاخص بنیاد ملی بهداشت (NSFWQI) و شاخص شورای وزرای محیط زیست کانادا (CCMEWQI)، داده‌های حاصل از نمونه‌برداری در رودخانه هراز (نُه ایستگاه در دو فصل زمستان و تابستان) به‌عنوان نمونه مورداستفاده قرار گرفت. نتایج نشان داد هر سه شاخص توانایی طبقه‌بندی نسبی کیفیت آب را دارند، اما تفاوت‌هایی در میزان حساسیت و تفکیک‌پذیری آن‌ها مشاهده شد، به‌طوری‌که شاخص NSFWQI در اغلب موارد نتایج خوش‌بینانه‌تری ارائه داد. هم‌چنین برای تحلیل تأثیر پارامترهای مختلف بر خروجی هر شاخص و بهینه‌سازی مدل‌سازی کیفی، از روش سطح پاسخ (RSM) استفاده شد.  نتایج بیانگر آن است که در فصل تابستان پارامترهای نیترات، فسفات، اکسیژن محلول و آمونیوم به‌ترتیب دارای اهمیت بالاتری می‌باشند و در مجموع 83 درصد را در بر می‌گیرد و در فصل زمستان پارامترهای اکسیژن‌خواهی بیولوژیکی و شیمیایی، سختی کل و اسیدیته به‌ترتیب دارای اهمیت بالایی می باشند و در مجموع 82 درصد را در بر می‌گیرد. وضعیت کیفیت آب براساس شاخص NSFWQI در فصل تابستان پایین‌تر از فصل زمستان است. در فصل زمستان 100 درصد از ایستگاه‌ها دارای کیفیت متوسط و خوب می‌باشد، اما در فصل تابستان حدود 34 درصد در وضعیت متوسط و خوب قرار دارند. هم‌چنین بر مبنای این شاخص در امتداد رودخانه شاهد روند کاهش کیفیت آب در هر دو فصل می‌باشیم. این پژوهش نشان می‌دهد که انتخاب شاخص می‌تواند بر تفسیر وضعیت کیفی آب تأثیرگذار باشد و ترکیب آن با روش‌های آماری مانند RSM می‌تواند ابزار مؤثری برای مدیریت کیفی منابع سطحی در سایر رودخانه‌ها نیز فراهم کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assesment of water quality of Haraz river with IRWQI, NSFWQI, CCMEWQI indices and optimization using response surface methodology -RSM

نویسندگان [English]

  • Yasaman Tajabadi
  • Homayoun Motiee
  • Ali Moridi
Department of Water, Wastewater and Environmental Engineering, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
چکیده [English]

Rivers, as one of the main sources of water supply, play a vital role in meeting environmental, agricultural, and  human needs. Assessing the water quality of these resources is essential for sustainable management and reducing environmental risks. Selecting an appropriate index for evaluating surface water quality is one of the  key challenges in water resources management. In this study, in order to compare three widely used water  quality indices, the Iranian National Water Quality Index (IRWQI), the National Sanitation Foundation Water  Quality Index (NSFWQI), and the Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI), data collected from the Haraz River (nine stations during two seasons: winter and summer)  were used as a case study. The results showed that all three indices were able to classify water quality  relatively well; however, differences were observed in their sensitivity and discriminatory capability, with the NSFWQI generally providing more optimistic results. Furthermore, Response Surface Methodology (RSM)  was employed to analyze the influence of different parameters on each index and to optimize water quality  modeling. The findings indicated that in summer, nitrate, phosphate, dissolved oxygen, and ammonium were  the most influential parameters, accounting for a total of 83%, while in winter, biochemical oxygen demand,  chemical oxygen demand, total hardness, and pH were the most influential, accounting for 82%. Water quality  based on the NSFWQI was lower in summer than in winter; during winter, all stations fell within the medium  to good categories, whereas only about 34% of the stations were in this range in summer. A decreasing trend in  water quality along the river was also observed in both seasons. This study demonstrates that the choice of  index can significantly affect the interpretation of water quality status, and that integrating indices with  statistical methods such as RSM can provide an effective tool for surface water quality management in other rivers.

کلیدواژه‌ها [English]

  • CCMEWQI
  • IRWQI
  • NSFWQI
  • Indices RSM
  • Water quality assessment
  1. Aazami, J., KianiMehr, N., Zamani, A., Abdolahi, Z., Zarein, M., & Jafari, N. (2019). Water Quality Assessment of Ghezelozan River in Zanjan Province Using NSFWQI, IRWQI and Liou. Journal of Environmental Health Engineering, 6(4), 385-400. (In Persian).
  2. Aghajanloo, K., Hajizadeh, E., & Ariaeizadeh, S. (2022). Evaluation of karun river water quality based on IRWQI and WAWQI indicators in molasani and ahvaz stations. Iranian Journal of Soil and Water Research, 53(2), 367-380. (In Persian).
  3. Antony, J. (2023). Design of experiments for engineers and scientists (3rd).Amsterdam, Netherlands, Elsevier Ltd.
  4. Athari, M. A., & Motiee, H. (2025). Multi-criteria analysis using AHP and GIS for identifying the most polluted sub-basin in a river basin environment. International Journal of River Basin Management, 23(4), 1-15.
  5. Bagheri, h., Mazlomi Mochani, M., Khalili, R., & Moridi, A. (2024). Seasonal changes in the water quality of Sardab river: dual perspectives of the Iran Water Quality Index for Surface Water Resources–Conventional Parameters (IRWQIsc) and the National Sanitation Foundation Water Quality Index (NSFWQI). Water and Irrigation Management, 14(1), 223-234. (In Persian).
  6. Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). A water quality index-do we dare. Water and Sewage Works, 117(10), 339-343.
  7. Calmuc, M., Calmuc, V., Arseni, M., Topa, C., Timofti, M., Georgescu, L. P., & Iticescu, C. (2020). A Comparative Approach to a Series of Physico-Chemical Quality Indices Used in Assessing Water Quality in the Lower Danube. Water, 12(11), Article 3239.
  8. (2017). Canadian water quality guidelines for the protection of aquatic life, CCME Water Quality Index, User’s Manual – 2017 Update. Canadian Council of Ministers of the Environment, Winnipeg.
  9. Davoudi Moghaddam, D., Haghizadeh, A., Tahmasebipour, N., & Zeinivand, H. (2021). Spatial and Temporal Water Quality Analysis of a Semi-Arid River for Drinking and Irrigation Purposes Using Water Quality Indices and GIS. ECOPERSIA, 9(2), 79-93.
  10. Environmental Protection Organization, Water and Soil Office.(2016). Iranian Water Quality Standard. Retrieved from https://www.doe.ir/portal/file/?692324/standard-mosavab-ver-1395.docx.(In Persian).
  11. Fallah Sourki, M., Kavian, A., & Omidvar, E. (2016). Prioritizitzation of Haraz sub-watersheds in order to Soil and Water Conservation Practices Based on Morphometric and Land Use Characteristics. Journal of Water and Soil Science, 20(77), 85-99. (In Persian).
  12. Fatih Ali, S., Hamud Hays, H., & Abdul-Jabar, R. A. (2021). Application of CCME water quality index for drinking purpose in Tigris River within Wasit Province, Iraq. Caspian Journal of Environmental Sciences, 19(5), 781-787.
  13. Gaytán-Alarcón, A. P., González-Elizondo, M. S., Sánchez-Ortíz, E., & Alarcón-Herrera, M. T. (2022). Comparative assessment of water quality indices—a case study to evaluate water quality for drinking water supply and irrigation in Northern Mexico. Environmental Monitoring and Assessment, 194(8), Article 588.
  14. Ghadami, F., Valian, M., Atoof, F., Dawi, E. A., Miranzadeh, M. B., Mahdi, M. A., & Salavati-Niasari, M. (2024). Response surface methodology for optimization of operational parameters to remove tetracycline from contaminated water by new magnetic Ho2MoO6/Fe2O3 nano adsorbent. Results in Engineering, 21(1), Article 101746.
  15. Hashemi, S.H., Poor Asghar, F., Nasr Abadi, T., Ramezani, S., & Khoshroo, Gh. (2011). Guide to calculating the quality index of Iranian water resources. Shahid Beheshti University, Environmental Sciences Research Institute. (In Persian).
  16. Iranian Fisheries Organization, Freshwater Aquatic Office. (2018). Technical regulations and guidelines for issuing licenses for rainbow trout breeding farms. (pp.15). (In Persian).
  17. Ismail, A. H., & Robescu, D. (2019). Assessment of water quality of the danube river using water quality indices technique. Environmental Engineering and Management Journal, 18(8), 1727-1737.
  18. Kazemi, P., Shariati, F., & Keshavars Shokri, A. (2018). Langroud River water quality assessment using NSFWQI qualitative indicators. Environmental Sciences, 16(3),65-78. (In Persian).
  19. Khosravi, K., Pham, B. T., Chapi, K., Shirzadi, A., Shahabi, H., Revhaug, I., Prakash, I., & Tien Bui, D. (2018). A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of The Total Environment, 627(13), 744-755.
  20. Kumar, A., Matta, G., & Bhatnagar, S. (2021). A coherent approach of Water Quality Indices and Multivariate Statistical Models to estimate the water quality and pollution source apportionment of River Ganga System in Himalayan region, Uttarakhand, India. Environmental Science and Pollution Research, 28(31), 42837-42852.
  21. Lee, B. C. Y., Mahtab, M. S., Neo, T. H., Farooqi, I. H., & Khursheed, A. (2022). A comprehensive review of Design of experiment (DOE) for water and wastewater treatment application - Key concepts, methodology and contextualized application. Journal of Water Process Engineering, 47(3), Article 102673.
  22. Mahagamage, M., & Manage, P. M. (2014). Water quality index (CCME-WQI) based assessment study of water quality in Kelani river basin, Sri Lanka. In: Proceeding of 1st Environment and natural resources International conference, 6-7 november, The Sukosol hotel, Bangkok, Thailand, 199-204.
  23. Mahdavy, M. (2009). Applied Hydrology (6th ed., Vol. 2). University of Tehran.
  24. Mazlomi Mochani, M., Hatami, A., Moridi, A., & Khalili, R. (2023). Sensitivity assessment of the National Sanitation Foundation Water Quality Index (NSFWQI) and IRan Water Quality Index for Surface Water Resources (IRWQIsc) on the water quality of the Neka River. Water and Irrigation Management, 13(3), 581-592.(In Persian).
  25. Ministry of Energy Deputy of Water Affairs. (2012). Guide Lines and Criteria for Classification and Coding Basin and Study Areas in IRAN, No.310.(In Persian).
  26. Ministry of Energy Deputy of Water Affairs. (2020). Review of some water resources quality indices No.196.(In Persian).
  27. Mohseni Bandpei, A., & Yousefi, Z. (2013). Status of Water Quality Parameters along Haraz River. International Journal of Environmental Research, 7(4), 1029-1038.
  28. Montgomery, D. C. (2020). Design and Analysis of Experiments (8th). John Wiley & Sons inc.
  29. Parween, S., Siddique, N. A., Diganta, M. T. M., Olbert, A. I., & Uddin, M. G. (2022). Assessment of urban river water quality using modified NSF water quality index model at Siliguri city, West Bengal, India. Environmental and Sustainability Indicators, 16(4), Article 100202.
  30. Rachiq, T., Samghouli, N., Mabrouki, J., El-Moustaqim, K., Rahmani, M., Al-Jadabi, N., El Hajjaji, S., & Rahal, S. (2022). Study and modeling of dairy effluents treatment using design of experiments methodology. Desalination and Water Treatment, 261(17), 131-140.
  31. Salvati, A., Nia, A. M., Salajegheh, A., Ghaderi, K., Asl, D. T., Al‐Ansari, N., Solaimani, F., & Clague, J. J. (2023). Flood susceptibility mapping using support vector regression and hyper‐parameter optimization. Journal of Flood Risk Management, 16(4), e12920.
  32. Singh, G., Patel, N., Jindal, T., Srivastava, P., & Bhowmik, A. (2020). Assessment of spatial and temporal variations in water quality by the application of multivariate statistical methods in the Kali River, Uttar Pradesh, India. Environmental Monitoring and Assessment, 192(6), Article 394.
  33. Weissman, S. A., & Anderson, N. G. (2015). Design of Experiments (DoE) and Process Optimization. A Review of Recent Publications. Organic Process Research & Development, 19(11), 1605-1633.
  34. World Health Organization. (2004). World report on knowledge for better health : strengthening health systems. Geneva: World Health Organization. Retrieved from the Library of Congress, https://www.loc.gov/item/2021763193/.W. H. Organization.
  35. Zare Garizi, A., Shahedi, K., & Matboo, A. (2024). Evaluation of Surface Water Quality of the Gorganrood River Basin for Different Uses with Canadian (CCME) Water Quality Index Approach . Journal of Water and Soil Science, 28(1), 127-143. (In Persian).