شبیه‌سازی شاخص‌های مختلف گیاه ذرت شیرین تحت سطوح مختلف آبیاری قطره‌ای زیرسطحی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

10.22059/jwim.2025.387972.1200

چکیده

تنش خشکی و نیاز روزافزون به تولید مواد غذایی باعث نگرانی جدی در مورد پایداری منابع آبی و سیستم‌های کشاورزی در مناطق خشک خاورمیانه به‌ویژه ایران شده است. آزمایش‌های مزرعه‌ای در چهار تکرار و در چهار سطح به مقدار ۱۲۰، ۱۰۰، ۸۰ و ۶۰ درصد نیاز آبیاری کامل برای محصول ذرت شیرین، انجام شد. واسنجی و اعتباریابی مدل سیستم پشتیبانی تصمیم برای انتقال فناوری کشاورزی (DSSAT) برای ارزیابی استراتژی‌های مدیریتی مختلف برای برنامه‌ریزی آبیاری بر عملکرد، شاخص سطح برگ و زیست‌توده ذرت شیرین موردبررسی قرار گرفت. این مطالعه نشان داد که مدل از نظر شبیه‌سازی اثر تنش شدید آبیاری بر رشدونمو ذرت شیرین در محدوده متوسط (NRMSE بین ۲۰ تا ۳۰ درصد) قرار دارد. نتایج ارزیابی مدل Ceres-Maize برای بررسی روند رشد پویا شاخص سطح برگ، ارتفاع و زیست‌توده قسمت هوایی ذرت شیرین نشان داد که مدل فرایند رشد زیست‌توده را شبیه‌سازی می‌کند. بر این ‌اساس، مدل در مرحله واسنجی و اعتباریابی تیمار ۲۰ درصد کم‌آبیاری، شاخص سطح برگ حداکثر را ۵۲/۰ و ۷۱/۰ کاهش داد. مدل در مراحل واسنجی و اعتباریابی، زمانی که گیاه در مرحله اولیه رشد قرار داشت با اعمال تنش خشکی شدیدتر، خطای زیادی نشان داد. نتایج نشان داد در تیمارهای کم‌آبیاری، مقادیر اندازه‌گیری‌شده سریع‌تر به مقادیر نهایی خود نزدیک می‌شوند. در رژیم ۴۰ درصد کم‌آبیاری مدل با خطای زیادی شبیه‌سازی عملکرد دانه را انجام داد، به‌طوری‌که مقادیر NRMSE در مرحله اعتباریابی ۰۳/۲۷ به‌دست آمد. به‌طورکلی این تحقیق نشان داد که مدل Ceres_Maize برای شبیه‌سازی عملکرد و زیست‌توده محصول ذرت شیرین عملکرد قابل‌قبولی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation Different Indices of Sweet Corn under Variable Levels of Subsurface Drip Irrigation

نویسندگان [English]

  • Milad Ebrahimi 1
  • Javad Behmanesh 1
  • Vahid Rezaverdinejad 1
  • Vahid Varshavian 2
1 Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran.
2 Department of Water Engineering, Faculty of Agriculture, Bu Ali Sina University, Hamadan, Iran.
چکیده [English]

Drought stress and the increasing need for food production have raised serious concerns about the sustainability of water resources and agricultural systems in the arid regions of the Middle East, particularly Iran. Field experiments were conducted in four replicates at four irrigation levels including 120%, 100%, 80%, and 60% of the full irrigation requirement for sweet corn. The Decision Support System for Agricultural Technology Transfer (DSSAT) model was calibrated and validated to evaluate various irrigation management strategies and their effects on yield, leaf area index, and biomass of sweet corn. The study revealed that the model displayed moderate accuracy (NRMSE between 20-30%) in simulating the impact of severe irrigation stress on the growth and development of sweet corn. The evaluation of the Ceres-Maize model in capturing dynamic growth trends of leaf area index, height, and aerial biomass showed that this model successfully simulated the biomass growth process. During calibration and validation under the 20% deficit treatment, the model reduced the maximum leaf area index by 0.52 and 0.71, respectively. However, the model exhibited significant errors in simulating initial plant growth stages under intense drought stress. The study also indicated that in deficit treatments, measured values reached their final levels more rapidly a trend evident for the plant height index as well. In the 40% deficit regime, the model showed substantial errors in grain yield simulation, with NRMSE values of 27.03 during the validation stage. Overall, the findings demonstrated that the Ceres-Maize model performs adequately in simulating yield and biomass of sweet corn.

کلیدواژه‌ها [English]

  • Ceres-Maize
  • Deficit Irrigation
  • Drought Stress
  • Precision Irrigation
  1. Abi Saab, M.T., Todorovic, M., & Albrizio, R. (2015). Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models? Water Manag, 147, 21-33.
  2. Allen, R G., Pereira, L S., Raes, D., & Smith, M., (1998). Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and drainage. paper 56.
  3. Anothai, J., Soler, C.M.T., Green, A., Trout, T.J., & Hoogenboom, G. (2013). Evaluation of two evapotranspiration approaches simulated with the CSM–CERES–Maize model under different irrigation strategies and the impact on maize growth, development and soil moisture content for semi-arid conditions. For. Meteorol., 176, 64-76.
  4. ASTM D7263-09. (2009). Standard test methods for laboratory determination of density unit weight of soil specimens. ASTM International, West Conshohocken, PA.
  5. Attia, A., Rajan, N., Xue, Q., Nair, S., Ibrahim, A., & Hays, D. (2016). Application of DSSAT- CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains. Agric. Water Manag, 165, 50-60.
  6. Bayabil, H.K., Teshome, F.T., Guzman, S.M., & Schaffer, B. (2023). Evapotranspiration Rates of Three Sweet Corn Cultivars under Different Irrigation Levels. HortTechnology, 33, 16-26.
  7. Bogena, H. R., Herbst, M., Huisman, J. A., Rosenbaum, U., Weuthen, A., & Vereecken, H. (2010). Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone Journal, 9(4), 1002-1013.
  8. Bray, R.H., & Kurtz, L.T. (1945). Determination of total, organic and available form of phosphorus in soil. Soil Soc, 59, 39-45.
  9. Carberry, P.R., Muchow, C., & Mc Cown, R.L. (1989). Testing the CERES- Maize simulation model in a semi-arid tropical environment. Field Crops Research, 20, 297-315.
  10. Chen, H., & Yada, R. (2011). Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Sci. Agric. -Food Nano Appl.: Ensuring Soc.
  11. DeJonge, K.C., Andales, A.A., Ascough II, J.C., & Hansen, N.C. (2011). Modeling of full and limited irrigation scenarios for corn in a semiarid environment. ASABE, 54 (2), 481-492.
  12. DeJonge, K.C., Ascough, J.C., Ahmadi, M., Andales, A.A., & Arabi, M. (2012). Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments. Model, 231, 113-125.
  13. Di Paola, A., Valentini, R., & Santini, M. (2016). An overview of available crop growth and yield models for studies and assessments in agriculture. Journal of the Science of Food and Agriculture, 96(3), 709-714.
  14. Ditta, A., Arshad, M., & Ibrahim, M. (2015). Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Siddiqui, M.H., Al-Whaibi, M.H., Mohammad, F. (Eds.) , Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants. Springer International Publishing, Cham, pp. 55-75.
  15. Dogan, E., Clark, G.A., Rogers, D.H., Martin, V., & Vanderlip, R.L. (2006). Onfarm scheduling studies and CERES-Maize simulation of irrigated corn. Applied Engineering in Agriculture, 22(4), 509-516.
  16. Earl, H.J., & Davis, RF. (2003). Effect of drought stress on leaf and whole canopy radiation, use efficiency and yield of maize. Agronomy Journal, 95, 688-696.
  17. Ebrahimi, M., Behmanesh, J., Rezaverdinejad, V., Varshavian, V., Azad, N., & Bahmani, O. (2022). Dynamic indices and yield of sweet corn under subsurface drip irrigation system. Journal of Water and Soil Conservation29(4), 115-123. doi: 10.22069/jwsc.2023.20734.3590
  18. Edgerton, M.D. (2009). Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol., 149, 7-13.
  19. Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K & Prasanna, B.M. (2022). Global maize production, consumption and trade: trends and R&D implications. Food Sec., 14, 1295-1319.
  20. Ertick, A., & Kar, B. (2013). Yield and quality of swect corn under deficit irrigation, Agriculture Water Management, 129, 138-144.
  21. Farsiani, A., Ghobadi, M. E., & Jalali-Honarmand, S. (2011). The effect of water deficit and sowing date on yield components and seed sugar contents of sweet corn (Zea mays). African Journal of Agricultural Research, 6(26), 5769-5774. https://doi. org/10.5897/AJAR11.1242.
  22. Fereres, E., & Soriano, M. A. (2007). Deficit irrigation for reducing agricultural water use. Journal of experimental botany, 58(2), 147-159.
  23. Getachew, F., Bayabil, H. K., Hoogenboom, G., Teshome, F. T., & Zewdu, E. (2021). Irrigation and shifting planting date as climate change adaptation strategies for sorghum. Agricultural Water Management, 255, 106988.
  24. Gul, F., Ahmed, I., Ashfaq, M., Jan, D., Fahad, S., Li, X., ... & Shah, S. A. (2020). Use of crop growth model to simulate the impact of climate change on yield of various wheat cultivars under different agro-environmental conditions in Khyber Pakhtunkhwa, Pakistan. Arabian Journal of Geosciences, 13(3), 112.
  25. Gunawat, A., Sharma, D., Sharma, A., & Dubey, S. K. (2022). Assessment of climate change impact and potential adaptation measures on wheat yield using the DSSAT model in the semi-arid environment. Natural Hazards, 111(2), 2077-2096.
  26. Hansen, J. W. (2005). Integrating seasonal climate prediction and agricultural models for insights into agricultural practice. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2037-2047.
  27. He, J., Dukes, M. D., Hochmuth, G. J., Jones, J. W., & Graham, W. D. (2011). Evaluation of sweet corn yield and nitrogen leaching with CERES-Maize considering input parameter uncertainties. Transactions of the ASABE, 54(4), 1257-1268.
  28. Hessari, B., & Zeynalzadeh, K. (2020). Investigation on human activities effects on water resources trend of Urmia Plain. Watershed Engineering and Management, 12(2), 415-427. doi: 10.22092/ijwmse.2019.124426.1580
  29. Hodges, T., Botner, D., Sakamoto, C., & Haug, J.H. (1987). Using the CERES-Maize model to estimate production for the U.S. Cornbelt. Agricultural and Forest Meteorology, 40, 293-303.
  30. Hokam, E. M., El‐Hendawy, S. E., & Schmidhalter, U. (2011). Drip irrigation frequency: The effects and their interaction with nitrogen fertilization on maize growth and nitrogen use efficiency under arid conditions. Journal of agronomy and crop science, 197(3), 186-201.
  31. Jones, J. W., Tsuji, G. Y., Hoogenboom, G., Hunt, L. A., Thornton, P. K., Wilkens, P. W., ... & Singh, U. (1998). Decision support system for agrotechnology transfer: DSSAT v3. In Understanding options for agricultural production (pp. 157-177). Dordrecht: Springer Netherlands.
  32. Hoogenboom, G., Porter, C.H., Boote, K.J., Shelia, V., Wilkens, P.W., Singh, U., White, J. W., Asseng, S., Lizaso, J.I., Moreno, L.P., Pavan, W., Ogoshi, R., Hunt, L.A., Tsuji, G. Y., & Jones, J.W. (2019). The DSSAT crop modeling ecosystem. In: Boote, K.J. (Ed.), Advances in Crop Modeling for a Sustainable Agriculture. Burleigh Dodds Science Publishing, Cambridge, United Kingdom, pp. 173-216.
  33. Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., & Gijsman, A.J. (2003). The DSSAT cropping system model. European Journal of Agronomy 18, 235-265.
  34. Kang, S., & Zhang, J. (2004). Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. Journal of experimental botany, 55(407), 2437-2446.
  35. Kullberg, E. G., DeJonge, K. C., & Chávez, J. L. (2017). Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agricultural water management, 179, 64-73.
  36. Lamm, F. R. (2005). SDI for conserving water in corn production. In Proc. ASCE-EWRI Water Congress, May 15-19, 2005, Anchorage, AK. 12 pp.
  37. Lamm, F. R. (2014). Irrigation and Nitrogen Management for Subsurface Drip Irrigated Corn -25 years of K-State’s Efforts. ASABE and CSBE/SCGAB Annual International Meeting.Montreal, Quebec Canada, 13-16 July.
  38. Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. (2014). Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural Water Management, 146, 84-94.
  39. Lobell, DB., Roberts, MJ., Schlenker, W., Braun, N., Little, BB., Rejesus, RM., & Hammer, GL., (2014). Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science, 344, 516-519.
  40. Lybbert, T.J., & Sumner, D.A. (2012). Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion. Food Policy, 37, 114-123.
  41. Ma, G.S., Xue, J.Q., Lu, H.D., Zhang, R.H., Tai, S.J., & Ren, J.H. (2007). Effects of planting date and density on population physiological indices of summer corn (Zea mays) in central Shaanxi irrigation area, Chinese Journal of Applied Ecology, 6, 1247-1253.
  42. Marek, G.W., Marek, T.H., Xue, Q., Gowda, P.H., Evett, S.R., & Brauer, D.K. (2017). Simulating evapotranspiration and yield response of selected corn varieties under full and limited irrigation in the Texas High Plains using DSSAT-CERES-Maize. ASABE, 60 (3), 837-846.
  43. Rosegrant, M.W., Koo, J., Cenacchi, N., Ringler, C., Robertson, R.D., Fisher, M., Cox, C.M., Garrett, K., Perez, N.D., & Sabbagh, P. (2014). Food security in a world of natural resource scarcity: The role of agricultural technologies. Intl Food Policy Res Inst.
  44. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. American Society of Agricultural and Biological Engineers, 50(3), 885-900.
  45. Mubeen, M., Ahmad, A., Wajid, A., Khaliq, T., & Bakhsh, A. (2013). Evaluating CSM-CERES-Maize model for irrigation scheduling in semi-arid conditions of Punjab. Pakistan. International Joural of Agricultural and Biology, 15, 1-10.
  46. Mubeen, M., Ahmad, A., Wajid, A., Khaliq, T., Hammad, H.M., Sultana, S.R., Ahmad, S., Fahad, S., & Nasim, W. (2016). Application of CSM-CERES-Maize model in optimizing irrigated conditions. Outlook Agric, 45 (3), 173184.
  47. Oktem, A. (2008). Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems. Agricultural water management, 95(9), 1003-1010.
  48. Oktem, A., Eulgun, A., & Coskun, Y., (2005). Determination of sowing dates of sweet corn (Zea mays Saccharata Sturt.) under Sanliurfa conditions. Turkish Journal of Agriculture and Forestry, 28, 83-91.
  49. Palosuo, T., Kersebaum, K.C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J.E., Patil, R.H., Ruget, F., Rumbaur, C., Takáč, J., & Trnka, M. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy, 35(3), 103-114.
  50. Panda, S. S., Ames, D. P., & Panigrahi, S. (2010). Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote sensing, 2(3), 673-696.
  51. Perry, C., Steduto, P., Allen, R. G., & Burt, C. M. (2009). Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities. Agricultural water management, 96(11), 1517-1524.
  52. Rauff, K. O., & Bello, R. (2015). A review of crop growth simulation models as tools for agricultural meteorology. Agricultural Sciences, 6(9), 1098-1105.
  53. Saddique, Q., Cai, H., Ishaque, W., Chen, H., Chau, H.W., Chattha, M.U., Hassan, M.U., Khan, M.I., & He, J. (2019). Optimizing the sowing date and irrigation strategy to improve maize yield by using CERES (crop estimation through resource and environment synthesis)-maize model. Agronomy, 9 (2), 109.
  54. Saseendran, S., Ahuja, L., Ma, L., Timlin, D., Stockle, C., Boote, K., & Hoogenboom, G. (2008). Current water deficit stress simulations in selected agricultural system models. Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes, 1, pp. 1-38.
  55. Saseendran, S.A., Ma, L., Nielsen, D.C., Vigil, M.F., & Ahuja, L.R. (2005). Simulating planting date effects on corn production using RZWQM and CERES-Maize models. Agronomy Journal, 97, 58-71.
  56. Scot, P., & Aboudrare, A. (2009). Adaptation of crop management to water-limited environment. Europeanm Journal of Agronomy, 21, 433-446
  57. Singh A. K., Tripathy, R., & Chopra, U. K. (2008). Evaluation of CERESWheat and CropSyst models for water-Nitrogen interactions in Wheat crop. Agricultural Water Management, 95, 776-786.
  58. Soler, C.M.T., Sentelhas, P.C., & Hoogenboom, G. (2007). Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. European Journal of Agronomy, 27, 165-177.
  59. Song, L., & Jin, J. (2020). Improving CERES-Maize for simulating maize growth and yield under water stress conditions. European Journal of Agronomy, 117, 126072.
  60. Stone, P.J., Wilson, D.R., Reid, J. B., & Gillespie, R.N. (2001). Water deficit effects summer maize. Agricultural Science China, 5, 228-291.
  61. Taghvaeian, S., Chávez, J. L., Bausch, W. C., DeJonge, K. C., & Trout, T. J. (2014). Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize. Irrigation Science, 32(1), 53-65.
  62. Tan, Q., & Zhang, T. (2018). Robust fractional programming approach for improving agricultural water-use efficiency under uncertainty. Journal of Hydrology, 564, 1110-1119.
  63. UN World Water Assessment Programme. (2012). WWDR4 Background Briefing Note_ ENG.
  64. van Donk, S. J., & Shaver, T. M. (2016). Effects of nitrogen application frequency via subsurface drip irrigation on corn development and grain yield. Journal of Plant Nutrition, 39(13), 1830-1839. DOI: 10.1080/01904167.2016.1143506.
  65. Vories, E. D., Tacker, P. L., Lancaster, S. W., & Glover, R. E. (2009). Subsurface drip irrigation of corn in the United States Mid-South. Agricultural Water Management, 96(6), 912-916.
  66. Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309-1313.
  67. Xie, Y., Kiniry, J.R., Nedlbalek, V., & Rosenthal, W.D. (2001). Maize and sorghum simulations with CERES- Maize, SORKAM, and ALMANAC under water limiting conditions. Agronomy Journal, 93, 1148-1155.
  68. Yakoub, A., Lloveras, J., Biau, A., Lindquist, J. L., & Lizaso, J. I. (2017). Testing and improving the maize models in DSSAT: Development, growth, yield, and N uptake. Field Crops Research, 212, 95-106.
  69. Yang, Z. (2008). Estimating CSM-CERES-maize genetic coefficients and soil parameters and evaluating model response to varying nitrogen management strategies under North Carolina conditions. North Carolina State University.