ارزیابی و تحلیل تعاملات متابولیکی و پیوند آب، غذا و انرژی با استفاده از چارچوب MUSIASEM (مطالعه موردی: حوضه آبریز فرامرزی هریرود)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی و مدیریت منابع آب، دانشگاه تربیت مدرس، تهران، ایران.

10.22059/jwim.2025.389988.1210

چکیده

آب، غذا و انرژی به‌عنوان سیستم‌های در همتنیده و به هم پیوسته، تأثیرات متقابل قابل‌توجهی بر یکدیگر دارند وتغییرات کمّی و کیفی در هر یک از این سیستم‌ها می‌تواند به سایرین آسیب بزند. رودخانه هریرود در مرز ایران و افغانستان به‌عنوان نمونه بارز یک سیستم در هم تنیده، تأمین‌کننده مهمی برای آب شرب کلان‌شهر مشهد و نیازهای کشاورزی دشت سرخس در ایران است و در افغانستان نیز، این رودخانه نقش حیاتی در کشاورزی هرات و تأمین انرژی برقابی ایفا می‌کند. با این‌حال، در سال‌های اخیر، تأمین آب به‌عنوان یک عامل کلیدی برای توسعه کشاورزی و انرژی در این حوضه با چالش‌های جدی مواجه شده است. دلایلی همچون مسائل سیاسی، اجتماعی، هیدرولوژیکی و ناکارآمدی در مدیریت منابع عوامل چنین چالش‌هایی در سطح حوضه می‌باشد. این پژوهش با استفاده از مفهوم متابولیسم، چارچوبی تحلیلی ارائه می‌دهد که به بررسی و مقایسه عملکرد و فرایندهای سیستم‌های آب، غذا و انرژی در سطح کشوری و حوضه آبریز می‌پردازد. کمّی‌سازی این رویکرد براساس داده‌ها و منابع معتبر موجود در سطح حوضه انجام شده است. نتایج این پژوهش حاکی از وابستگی شدید سیستم‌های آب و غذا و انرژی در سطح حوضه و کشورهای ساحلی آن می‌باشد به گونه ای که، ایران برای تولید حدود 2 میلیون و 700 هزار تن محصولات کشاورزی منتخب در منطقه، سالانه ۱914 میلیون مترمکعب آب و 10701 تراژول انرژی مصرف کرده است. افغانستان نیز با مصرف 1400 میلیون مترمکعب آب و 3153 تراژول انرژی، 740 هزار تن محصول کشاورزی تولید کرده است. هم‌چنین نیروگاه برقابی سلما با عبور جریانی به حجم 755 میلیون مترمکعب از توربین‌ها ۱۹۷ هزار مگاوات ساعت برق برای تأمین انرژی منطقه تولید کرده است. با این‌حال، افغانستان وابستگی زیادی به واردات غذا و انرژی دارد. نتایج حاکی از ضرورت تقویت همکاری‌های دو کشور ایران و افغانستان و ایجاد سازوکارهای مشترک برای مدیریت بهینه منابع آبی هریرود می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment and analysis of metabolic interactions and water, food, and energy nexus using the MUSIASEM framework (Case Study: the Harirud Transboundary Basin)

نویسندگان [English]

  • Ensiyeh Talaee
  • Majid Delavar
Department of Water Resources Engineering, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

Water, food, and energy, as intertwined and interconnected systems, have significant mutual impacts on each other, and quantitative and qualitative changes in each system can adversely affect the others. The Harirud River located on the border between Iran and Afghanistan, as a prime example of an intertwined system, is a major supplier of drinking water for the metropolis of Mashhad and supports the agricultural needs of the Sarakhs Plain in Iran and also this river plays a vital role in Herat’s agriculture and hydropower energy supply in Afghanistan. However, in recent years, water supply as a key factor for the development of agriculture and energy in this basin, has faced serious challenges. Reasons such as political, social, and hydrological issues, along with inefficiencies in resources management are factors for such challenges at the basin level. This study provides an analytical framework that examines and compares the performance and processes of water, food, and energy systems at the national and basin levels using the concept of metabolism. The quantification of this approach is carried out based on reliable data and resources available at the watershed level. The results of this study reveal the significant dependence on water, food, and energy systems at the basin level and within the riparian countries, in such a way that Iran consumed 1,914 million cubic meters of water and 10,701 terajoules of energy annually to produce approximately 2.7 million tons of selected agricultural products. Afghanistan, meanwhile, produced 740,000 tons of agricultural products by consuming 1400 million cubic meters of water and 3,153 terajoules of energy. Additionally, the Salma powerplant has generated 197,000 megawatt-hours of electricity to meet the region’s energy demands by utilizing a flow volume of 755 million cubic meters through its turbines. However, they remain highly dependent on food and energy imports. The results emphasize the necessity of strengthening cooperation between Iran and Afghanistan and establishing joint mechanisms to ensure the optimal management of the Harirud water resources.

کلیدواژه‌ها [English]

  • Water
  • food
  • and energy nexus
  • Transboundary Basin
  • Metabolism
  • Harirud
  1. Abdelradi, F., & Serra, T. (2015). Food–energy nexus in Europe: Price volatility approach. Energy Economics, 48, 157-
  2. Ahmadi, A.W., & Heravi, A.N. (2023). A Perspective on the Water Resources of Harirud Marghab and Investigation of the Quality of Groundwater in Rural Areas of Herat Province. International Journal of Sustainability in Energy and Environment, 1(1).
  3. Almulla, Y., Ramos, E., Gardumi, F., & Howells, M. (2017). Integrated resource assessment of the Drina River Basin, EGU General Assembly, 19, 15215.
  4. Al-Saidi, M., Elagib, N., Ribbe, L., Schellenberg, T., Roach, E., & Oezhan, D. (2017). Water‐Energy‐Food Security Nexus in the Eastern Nile Basin: Assessing the Potential of Transboundary Regional Cooperation. In book water-energy-food nexus: Principles and Practices, 10, 103-116.
  5. Antonelli, M., & Tamea, S. (2015). Food-water security and virtual water trade in the Middle East and North Africa. International Journal of Water Resources Development31(3), 326-342.
  6. An, D. (2022). Interactions in water-energy-food security nexus: A case study of South Korea. Frontiers in Water, 4, 943053.
  7. Aslani, M., Monem, M. J., & Bagheri, A. (2023). Development of the Conceptual Model for Water, Food and Energy Chain (Nexus) in Water Management in Irrigation Networks Using Systems Dynamics Approach. Journal of Watershed Manage Res,14(28), 16- (In Persian).
  8. Bakhshi, R. (2023). Environmental assessment of renewable and non-renewable power plants for electricity generation from the perspective of CO2 emission. Iranian Energy Economics. (In Persian).
  9. Conway, D., Archer, E., Krueger, E., & Landman, W. A. (2015). Climate and Southern Africa's Water–Energy–Food Nexus. Nature Climate Change, 5(9), 837-846.
  10. Daher, B.T., & Mohtar, R.H. (2015). Water–Energy–Food (WEF) Nexus Tool 2.0: Guiding integrative resource planning and decision-making. Journal of Water International, 40, 748-771.
  11. El-Gafy, I. (2017). Water–food–energy nexus index: analysis of water–energy–food nexus of crop’s production system applying the indicators approach. Applied Water Science, 7(6), 2857-2868.
  12. Food and Agriculture Organization (FAO). https://www.fao.org/faostat
  13. Giampietro, M., Renner, A., & Benelcazar, J. C. (2022). An accounting framework recognizing the complexity of the nexus. Handbook on the Water-Food-Energy Nexus, 18, 329-345.
  14. Ghadami Firouzabadi, A., Dehghani Sanij, H., Khoshravesh, M., & Seyedan, S. M. (2015). Evaluation of Energy Efficiency and Water Consumption in Gasoline Pumping Stations. Journal of Water Research in Agriculture, 29(3), 367-377. (In Persian).
  15. Ghosh, B., Gubareva, M., Ghosh, A., Paparas, D., & Vo, X.V. (2024). Food, energy, and water nexus: a study on interconnectedness and trade-offs. Energy Econ, 133, 107521.
  16. Ghodrati, S., Kargari, N., Farsad, F., Javid, A. H., & Kani, A. R. (2021). Investigation of Water Consumption with Water and Energy Nexus Approach in Iranian Combined Cycle Power Plants. Journal of Water and Sustainable Development, 8(1), 11-18. (In Persian).
  17. Kargari, N., & Mastouri, R. (2010). Comparison of GHG Emission in Different Kinds of Power Plants by LCA Approach. Iranian Journal of Energy, 13(2), 67-78. (In Persian).
  18. Karnib, A. (2017). A Quantitative Assessment Framework for Water, Energy and Food Nexus. Computational Water, Energy, Environmental, 6(1), 11-23.
  19. Li, J., Cui, J., Sui, P., Yue, Sh., Yang, J., Lv, Z., Wang, D., Chen, X., Sun, B., Ron, M., & Chen, Y. (2021). Valuing the synergy in the water-energy-food nexus for cropping systems: a case in the North China Plain. Ecological Indicators, 127, 107741.
  20. Ministry of Energy & Water, Islamic Republic of Afghanistan. No Data. Final Report: Institutional Capacity Assessment of Vocational Training for Operation and Maintenance in the Energy Sector of Afghanistan Retrieved from https://energypedia.info/images/0/0f/VTC_Assessment_Report_Final.pdf.
  21. Motaghi, A., kavianirad, M., Zarghani, S. H., & Sadrania, H. (2018). Identifying and analyzing the factors affecting the hydropolitical relations of Iran and Afghanistan in the Harirud Basin. Journal of Subcontinent Researches, 10(34), 235-254. (In Persian).
  22. Nasrollahi, Z., Dehghan, F., & Operajuneghani, E. (2022). Evaluating the Energy-Water Nexus in the Economic Sectors of Isfahan and Yazd Based on Two-Region Input-Output Analysis. QJER, 22(1), 53-82. (In Persian).
  23. Nazari Mejdar, H., Moridi, A., & Yazdi, J., & KhazaiePoul, A. (2019). Sustainability Outlook of Domestic and Agricultural Demand of Dusti Dam Considering Climate change Scenarios and Impact of Salma Dam.Iran-Water Resources Research, 15(3), 17-32. (In Persian).
  24. Neifer, R. (2013). Islamic Republic of Afghanistan: Power Sector Master Plan: Sovereign Project. Retrieved from Asian Development Bank, Website: https://www.adb.org/projects/43497-012/main.
  25. Parsa, S., Zarrin, A., Mofidi, A., & Dadashi-Roudbari, A. (2024). The Impact of Climate Change on Temperature and Precipitation in Afghanistan with Emphasis on the Helmand and Hariroud Basins. Journal of Water and Sustainable Development, 11(1), 35-48. (In Persian).
  26. Report of GIZ Afghanistam, Submitted to Ministry of Energy & Water, Islamic Republic of Afghanistan. Institutional Capacity Assessment of Vocational Training for Operation and Maintenance in the Energy Sector of Afghanistan.
  27. Rosell, A.G., Arfa, I., & Blanco, M. (2023). Introducing GoNEXUS SEF: a solutions evaluation framework for the joint governance of water, energy, and food resources. Sustainability Science, 18, 1683-1703.
  28. Safaee, V., Pourmohamad, Y., & Davari, K. (2020). Integrated Approach of Water, Energy and Food in Water Resources Management (Case Study: Mashhad Catchment). Iranian Journal of Irrigation and Drainage, 14(5), 1708-1721. (In Persian).
  29. Saffi, M., & Javid, H. (2013). Water Resource Potential, Quality Proplems, Challenges and Solutions in Afghanistan: Research Report. Retrieved from DACAAR Main Office Kabul, Website: https://www.dacaar.org.
  30. Schlemm, A., Mulligan, M., Tang, T., Agramont, A., Namugize, J., Malombala, E., & Griensven, A. V. (2024). Developing meaningful water-energy-food-environment (WEFE) nexus indicators with stakeholders: An Upper White Nile case study. Science of the Total Environment, 931, 172839.
  31. Shoghi, J. A., & Ahmadi, A. (2018). A Stability Analysis of Treaties in Transboundary Rivers Using Game Theory, A Case Study: Harirud River. Iran-Water Resources Research, 14(4), 102-113. (In Persian).
  32. Tovar, T. S., Suarez, B. P., Musicki, A., Bencomo, J. F., Cabello, V., & Giampietro, M. (2019). Structuring an integrated water-energy-food nexus assessment of a local wind energy desalination system for irrigation. Science of the Total Environment, 689(1), 945057.
  33. Uhl, V. W., Uhl, B., & Associates, R. (2003). Stream: An Overview of Groundwater Resources and Challenges. Washington Crossing, PA, USA: Academic Press.
  34. White, D. J., Hubacek, K., Kuishuang, F., Laxiang, S., & Meng, B. (2018). The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis. Applied Energy, 210, 102-113.
  35. Xiaoa, Z., Yaob, M., Tang, X., & Su, L. (2019). Identifying critical supply chains: An input-output analysis for Food-Energy-Water Nexus in China. Ecological modelling, 392, 31-37.