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Table 1 - Evaluation of minimum temperature, maximum temperature, precipitation and evapotranspiration (1986-

2014)
Parameter GCM R? RMSE MBE

ACCE 0.94 2.39 1.3

CAN 0.94 2.55 1.6

Minimum temperature (°C) CNRM 0.93 2.67 1.5
GFD 0.94 245 1.5

Ensemble model 0.96 2.22 1.4

ACCE 0.93 2.82 0.2

CAN 0.94 2.66 0.4

Maximum temperature (°C) CNRM 0.94 2.69 0.1
GFD 0.93 2.7 0.1

Ensemble model 0.95 2.26 0.2

ACCE 0.15 31.51 -6
CAN 0.12 32.55 -6.4
Precipitation (mm) CNRM 0.23 29.49 -5.4
GFD 0.1 32.91 -5.4
Ensemble model 0.26 28.28 -5.7
ACCE 0.95 15.17 -0.6

CAN 0.95 14.4 0.5

Evapotranspiration (mm)

CNRM 0.95 14.4 -1.2

GFD 0.95 14.48 -0.9



Ensemble model 0.96 13.05 -0.5
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Figure.2. Annual average minimum and maximum temperatures, total precipitation and
evapotranspiration
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Table 3- Statistical evaluation of random forest, neural network and ensemble methods in performance
simulation (1986-2014)

Step Method R? RMSE (ton/ha) MBE (ton/ha)
neural network 0.99 0.001 0.007

Train random forest 0.93 0.2 -0.002
ensemble model 0.98 0.13 0.007
neural network 0.73 0.44 -0.03

Test random forest 0.45 0.33 -0.03
ensemble model 0.67 0.3 -0.01
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Figure. 3. Average annual maize yield in future periods
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Figure.4. Wheat yield time series

Table 4 - Mann-Kendall test results for scenarios
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1. The Coupled Model Intercomparison Project
2.The Coupled Model Intercomparison Project Phase 6
3. Shared Socioeconomic Pathways
4. The Coupled Model Intercomparison Project Phase 5
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6. General Circulation Model
7. The Intergovernmental Panel on Climate Change
8. Bias Correction and Spatial Disaggregation
9.Root Mean Squared Error
10. Mean Bias Error

11. coefficient of determination
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Simulation of wheat yield under the influence of climate change using neural network and random forest
ensemble models

Abstract

Climate change increases the frequency and intensity of extreme events such as droughts, heat waves, and floods,
posing a significant challenge to agriculture and food security. Understanding the future impact of climate on crop
yields is crucial for long-term agricultural planning. However, this area has been underexplored due to various
challenges, including data limitations. In this study, precipitation, minimum temperature, maximum temperature, and
evapotranspiration data from the CNRM-CM6-1, GFDL-ESM4, ACCESS-CM2, and CanESMS5 climate models were
compared with Qazvin synoptic data for the base period 1986-2014 individually and ensemble. The results showed
that evapotranspiration, minimum and maximum temperatures in the ensemble model are associated with reasonable
and appropriate estimates with coefficient of determination values of 0.95 and low RMSE values. The results also
showed that running models in groups reduces errors. Using an ensemble model, precipitation data, minimum
temperature, maximum temperature, and evapotranspiration were simulated under two scenarios, SSP2 4.5 and
SSP5 8.5, for future periods, and the results showed that temperature and evapotranspiration will increase and
precipitation will decrease in future periods. Using climatic parameters, wheat yield was evaluated using random
forest, neural network, and ensemble model methods in the baseline period, and the results showed that the ensemble
model reduced the error. Therefore, the ensemble model was used to simulate wheat yield in future periods, and the
results showed that wheat yield would decrease in future periods.

Keywords: General Circulation Models, Precipitation, Scenarios of the sixth report, Temperature.



